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Abstract

With the proliferation of deep convolutional neural network (CNN)
algorithms for mobile processing, limited precision quantization has
become an essential tool for CNN efficiency. Consequently, vari-
ous works have sought to design fixed precision quantization algo-
rithms and quantization-focused optimization techniques that min-
imize quantization induced performance degradation. However,
there is little concrete understanding of how various CNN design de-
cisions/best practices affect quantized inference behaviour. Weight
initialization strategies are often associated with solving issues such
as vanishing/exploding gradients but an often-overlooked aspect
is their impact on the final trained distributions of each layer. We
present an in-depth, fine-grained ablation study of the effect of dif-
ferent weights initializations on the final distributions of weights and
activations of different CNN architectures. The fine-grained, layer-
wise analysis enables us to gain deep insights on how initial weights
distributions will affect final accuracy and quantized behaviour. To
our best knowledge, we are the first to perform such a low-level, in-
depth quantitative analysis of weights initialization and its effect on
quantized behaviour.

1 Introduction

Deep Convolutional Neural Networks (CNN) have enabled dramatic
advances in the field of computer vision. An explosion of recent re-
search has demonstrated incredible results in applications such as
image classification [1–3], object detection [4–7], image segmen-
tation [8, 9] and many more. As CNNs have become an increas-
ing part of everyday life, their usage has expanded to mobile pro-
cessing. With this expansion comes issues of minimizing latency,
area, and power. Fixed point quantization of CNN weights and ac-
tivations has become an essential tool for running efficient CNN
inference. Various works have explored different quantization algo-
rithms [10–12] to minimize the loss of information when mapping
the weights and activations of a CNN into a discretized space. With
these methods, the weights and activations can be represented as
an n-bit (most often 8-bit) integer rather than 32-bit floating point
numbers. Consequently, simple integer multiply-accumulate (MAC)
operations can be performed rather than costly floating point arith-
metic. This leads to significant savings in both computation (integer
arithmetic) and storage (typically 8-bits per value or less).

Mobile hardware accelerators are usually limited in the types
of operations that can be massively parallelized for fast execu-
tion. Thus, more complex quantization methods are often not sup-
ported by existing hardware. As such, other works have focused on
quantization-algorithm-specific optimization methods (Eg. target-
ing 8-bit uniform quantization). These include quantization-aware
fine-tuning [10] and differential optimization of quantization param-
eters [13, 14], eg. finding the optimal max/min thresholds of each
weight/activation tensor for minimal quantized degradation. These
methods train a model that is robust to quantized perturbations by
simulating the error/noise of fixed point arithmetic.

Despite significant works demonstrating ways to recover near
floating-point performance using reduced precision inference, there
is still little understanding of how different design decisions can af-
fect the quantized inference behaviour of CNNs. Weights initializa-
tion strategies are often designed with the goal of solving issues
such as vanishing/exploding gradient [15–17]. However, an often-
overlooked aspect of weights initialization is its impact on the final
trained distributions of each layer. As they determine our starting
point on the loss surface, initial distributions of each weight tensor
will have a profound impact on the final trained model. Gradient de-
scent is an incremental process with many small, noisy steps. Thus,
an intelligent weight initialization strategy will have significant impact
on the local minima reached on our path through the loss space.
With regards to quantization, this means that weight initialization
choices will have significant impact on the dynamic ranges of the
weights and activations in a trained CNN. Thus, affecting the noise
in our system and the expected quantized inference behaviour.

We propose a framework for in-depth, fine-grained quantitative
analysis of the impact of various weights initialization strategies on
final accuracy and quantized behaviour. By analyzing the trained
distributions of each layer’s weights and activations, we can gain
deep insight on how different weights initialization strategies will af-
fect the dynamic ranges of each layer. This in turn provides insight
on the quantized behaviour of a CNN. Furthermore, we analyze the
effect of these different weights initializations for a small set of dif-
ferent CNN architectures. Thus, we are able to isolate and observe
the interplay between the CNN architecture choices (the parameter-
ization) and the weights initialization strategy (the starting point on
the parameterized loss surface). To our best knowledge, we are the
first to perform such a systematic, low-level, quantitative analysis
of weights initialization strategies and quantized behaviour. Fur-
thermore, our framework for fine-grained analysis is applicable to
analyzing any number of CNN design choices such as layer types,
batch size, learning rate schedule etc.

2 Background

In early research, neural network parameters were often randomly
initialized based on sampling from a normal or uniform distribution.
The respective variance and range of these distributions would be
hyperparameters for the practitioner to decide. While easily taken
for granted, several works such as [15–17] have provided rigorous
mathematical proofs showing how intelligent weights initialization
strategies can solve issues of vanishing and exploding gradients.
These works define fan_in and fan_out of a fully connected layer
as the input/output units respectively. For convolution, it is de-
fined as Eq. 1 where K is the kernel width (assume square kernel).
They provide mathematical proofs on their proposed fan_in/fan_out-
aware initialization strategies that scale the variance of gradients at
each layer. Thus, avoiding failure modes created by vanishing and
exploding gradients. While the introduction of Batch Normalization
(BatchNorm) [18] layers has greatly mitigated training issues involv-
ing gradient scales, the choice of "where to begin" in the parame-
terized loss space is still extremely relevant. An often-overlooked
effect of these initialization strategies is their impact on the trained
dynamic ranges of each layer. As gradient descent is a noisy, itera-
tive process with small, incremental steps, the final dynamic ranges
of each layer are profoundly impacted by their starting point.

f anin/out = K ×K × channelin/out (1)

3 Fine-grained Layerwise Analysis

Besides a high-level study of how different weight initializations af-
fect 32-bit floating point (fp32) and eight-bit quantized (quint8) accu-
racy, we also wish to gain detailed insight on the layer-wise distribu-
tions of final trained weights and activations. This information can
give us an in-depth look at how the learning dynamics of various
weight initializations play out. Furthermore, the dynamic ranges of
each weight/activation tensor determine the resolution of the quan-
tized step-size and, by extension, the quantization noise in a CNN.
Thus, this analysis can help explain the observed quantized infer-
ence behaviour of different trained models. We propose system-
atically ablating through a variety of different weight initialization
strategies while tracking the dynamic ranges of each layer’s weights
and activations during training. In this way, we can isolate the effect
of these different design choices and analyze the changing distribu-
tions at each layer. We also track the "average channel precision".
Average channel precision is defined as Eq. 2. Channel precision in
this context is the ratio between an individual channel’s range and
the range of the entire layer. [19] uses this precision quantity to
algorithmically maximize the channel precisions of each layer in a
network prior to quantization. It can be seen as a measure of how
well the overall layer-wise quantization encodings represent the in-
formation in each channel.

average_precision =
1
K

K

∑
i=1

rangei

rangetensor
(2)



For dynamic ranges of activations, we randomly sample N train-
ing inputs from our training set and observe the corresponding ac-
tivation responses. To reduce outlier noise, we perform symmetric
percentile clipping (Eg. top and bottom 1%) and track the dynamic
range and average precision of the clipped activations. As per-
centile clipping has become a ubiquitous default quantization set-
ting we feel that this method establishes a realistic baseline of what
can be expected during inference-time. Finally, there is one more
set of dynamic ranges that must be observed. Batch Normalization
has become the best-practice in a large range of CNN algorithms.
However, their vanilla form is not well-suited for mobile hardware
processing. Best practice for fast CNN inference usually involves
folding the scale and variance parameters of a BatchNorm layer into
the preceding layer’s convolution parameters prior to quantization,
as shown in Eq. 3. Therefore, we must also track the dynamic range
and precision of our CNN’s batchnorm-folded (BN-Fold) weights. In
this manner, we can iterate through various weight initializations,
gaining insights at each step on the trained models and their learn-
ing dynamics as well as the final weights and activations distribu-
tions. Our method can be extended to analyze a plethora of other
design choices. These can include architecture choices such as
layer-type, skip/residual connections as well as training hyperpa-
rameters such as learning rate schedules, batch size, optimizers
etc. Despite their simplicity, such analyses can provide deep insight
on the interplay of these various design choices and perhaps yield
new understanding on their interaction.

w f old =
γw√

EMA(σ2
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(3)

4 Experiment

For our experiment we use a simple, VGG-like macroarchitecture
with four variations that differ in the micro-architecture of each layer
(eg. type of convolution block used, use of BatchNorm and Relu
etc. See Figure 1 for the general macro-architecture and details
on the different variations of convolution layers). Our four CNNs
are trained and tested on CIFAR-10 with a wide variety of differ-
ent weight initialization strategies. These strategies can be sep-
arated into two categories of naive, straightforward strategies and
more intelligent, layer-aware methods. Furthermore, the most com-
mon random weight initializations can also be categorized by the
type of sampling distribution: random sampling from uniform dis-
tributions (hereafter referred to as RandUni) and random sampling
from normal distributions (hereafter referred to as RandNorm). With
considerations of dynamic range in mind, we seek to select distribu-
tions for the naive methods that would roughly correspond to small,
medium, and large initial weights ranges. For the layer-aware initial-
ization strategies, we use four commonly used methods introduced
in [15, 16]. Named after the authors, we call them Glorot Uniform
(GlorotUni) and Glorot Normal (GlorotNorm) from [15], He Uniform
(HeUni) and He Normal (HeNorm) from [16]. In these works, the
distribution range (for uniform sampling) and standard deviation (for
normal sampling) for each layer are calculated based on fan_in,
fan_out, or some combination of the two. We choose to focus on
only the convolution layers and so the fully connected layers are al-
ways initialized using Glorot Uniform initialization. Furthermore, we
also keep the weight initialization of the first convolution layer con-
stant; only Glorot Uniform initialization is used. This was to keep
the very first convolution layer as constant as possible.

Based on initial results showing Glorot Uniform having the most
success in fp32 accuracy, we further experiment with Modified Glo-
rot Uniform (ModGlorotUni) weights initialization strategies. The
method of computing the max/min range of the uniform sampling
distribution in Glorot Uniform initialization can be generalized as
Eq. 4. In the original paper, C = 6. Following our established method
of selecting distributions corresponding to small, medium, and large
initial weights ranges, we select two values of C that would roughly
correspond to medium and large ranges. The original Glorot Uni-
form leads to fairly small ranges. See Table 1 for a detailed break-
down of the sampling methods used in each of the 48 experiments.

max/min =±

√
C

f an_in+ f an_out
(4)

Each network is trained for 200 epochs of SGD with Momen-
tum = 0.9 and batch-size = 128. Initial learning rate is 0.01 and we

Table 1: List of the various weight initialization strategies used. For
methods that require some hyperparameter selection we include
the values selected.

Initialization Method Standard Deviation Max/Min Value C

RandNorm Large 1 N/A N/A

RandNorm Med 0.5 N/A N/A

RandNorm Small 0.1 N/A N/A

RandUni Large N/A +/- 1 N/A

RandUni Med N/A +/- 0.5 N/A

RandUni Small N/A +/- 0.25 N/A

ModGlorotUni Large N/A N/A 1296

ModGlorotUni Med N/A N/A 36

GlorotUni N/A N/A N/A

GlorotNorm N/A N/A N/A

HeUni N/A N/A N/A

HeNorm N/A N/A N/A

scale it by 0.1 at the 75th, 120th, and 170th epochs. For the acti-
vation range tracking we perform top/bottom 1% clipping computed
on a random sample of 1024 training samples. Basic data aug-
mentation includes vertical/horizontal shift, zoom, vertical/horizontal
flip and rotation. We use Tensorflow for training and quantizing the
weights and activations to quint8 format.

For each network we evaluate testing performance with respect
to 4 metrics: fp32 accuracy, quint8 accuracy, quantized mean-
squared error (QMSE), and quantized crossentropy (QCE). Results
are presented in Table 2. QMSE refers to the MSE between the
fp32 network outputs and the quint8 network outputs after dequan-
tization. Similarly, QCE measures the cross entropy between the
fp32 network outputs and the dequantized quint8 network outputs.
While QMSE directly measures how much the quint8 network out-
puts deviate from the fp32 network, QCE quantifies the difference in
the distribution of the network outputs. For classification tasks, the
quantized network can predict the same class as the fp32 network,
despite deviations in logit values, if the overall shape of the output
distribution is similar. Therefore QCE can sometimes be more re-
flective of differences in quantized behaviour. Additionally, we also
observe the percent accuracy degradation (change in accuracy di-
vided by fp32 accuracy) of each network after quantization. Though
these quantities often track together, there can be scenarios where
a network with more QMSE or QCE actually has less relative quan-
tization degradation from a pure accuracy standpoint. This is likely
explained by favourable rounding within the network.

5 Discussion

We can see in Table 2 that besides affecting the final FP32 ac-
curacy of a given CNN architecture, the weights initialization strat-
egy also has significant impact on the QUINT8 accuracy. Particu-
larly worth noting is the markedly improved quantized behaviour in
the DWS_Conv_With_BN networks trained using RandUni_Large
initialization. Equally noteworthy is the stark drop in QUINT8 ac-
curacy observed with the DWS_Conv_With_BN networks trained
with the HeNorm and HeUni weight initializations and the Regu-
lar_Conv_With_BN network trained with ModGlorotUni_Med initial-
ization. As expected, quantized accuracy usually worsened when
BatchNorm layers were introduced. This is often attributed to the
increased dynamic ranges/distributional shift introduced by Batch-
Norm Folding.

While each CNN architecture is trained on twelve different ini-
tialization methods, Regular_Conv_No_BN only has four results.
This is because the other initialization methods had issues of ex-
ploding gradients. Their results were ommitted. Most of the
DWS_Conv_No_BN experiments also did not learn but suffered
from vanishing gradient issues instead. However, in our analy-
ses we found that these vanishing gradients were not necessar-
ily caused by a deep architecture leading to the gradient progres-
sively vanishing during backpropagation. Instead, we observed a
"vanishing activations" type phenomenon wherein the activations of
the final Depthwise Separable Convolution block are exceedingly
small. Thus, no gradients are able to propagate past the fully con-
nected layers. Figure 2 shows a plot of the network activations in



Fig. 1: General Macroarchitecture of the CNN. For our analysis we use a fixed macro-architecture so that we can isolate the interactions between various weight initialization
strategies and a few different convolutional layer choices. We train four variations of this macro-architecture determined by the type of conv-block used at each layer: Regu-
lar_Conv_With_BN, Regular_Conv_No_BN, DWS_Conv_With_BN, and DWS_Conv_No_BN. These respectively correspond to using regular convolution followed by BatchNorm
and Relu, regular convolution followed by only Relu and no BatchNorm, depthwise separable convolution blocks with BatchNorm and Relu after each convolution layer (same as
the MobileNets block in [20]), and finally depthwise seperable convolution with only Relu and no BatchNorm after each convolution layer. The very first convolution layer stays
fixed for all architectures, but follows the With/Without BatchNorm behaviour of the rest of the layers.

Table 2: Detailed results for each combination of weight initialization strategy and CNN architecture. The initialization strategies that
suffered from vanishing/exploding gradients are ommitted. DWS_Conv_No_BN_GlorotUni is kept for illustrative purposes.

Network Architecture FP32 Accuracy QUINT8 Accuracy QMSE QCE Percent Accuracy Decrease

DWS_Conv_No_BN_GlorotUni 10.00 10.00 0.000 2.303 0.00

DWS_Conv_No_BN_ModGlorotUni_Large 74.42 70.70 0.009 1.109 5.00

DWS_Conv_No_BN_RandNorm_Large 69.94 63.07 0.006 0.893 9.82

DWS_Conv_No_BN_RandNorm_Med 74.68 73.26 0.006 0.951 1.90

DWS_Conv_No_BN_RandUni_Large 75.22 72.77 0.004 0.872 3.26

DWS_Conv_With_BN_GlorotNorm 80.10 69.76 0.014 1.127 12.91

DWS_Conv_With_BN_GlorotUni 81.04 71.02 0.012 1.054 12.36

DWS_Conv_With_BN_ModGlorotUni_Large 76.33 68.64 0.012 1.789 10.07

DWS_Conv_With_BN_ModGlorotUni_Med 80.16 70.86 0.014 1.011 11.60

DWS_Conv_With_BN_HeNorm 79.48 55.56 0.033 2.400 30.10

DWS_Conv_With_BN_HeUni 80.51 62.49 0.024 1.786 22.38

DWS_Conv_With_BN_RandNorm_Large 74.93 66.32 0.010 1.358 11.49

DWS_Conv_With_BN_RandNorm_Med 77.99 66.32 0.016 1.694 14.96

DWS_Conv_With_BN_RandNorm_Small 80.61 70.12 0.013 1.464 13.01

DWS_Conv_With_BN_RandUni_Large 76.60 74.18 0.003 0.811 3.16

DWS_Conv_With_BN_RandUni_Med 78.40 67.82 0.016 1.993 13.49

DWS_Conv_With_BN_RandUni_Small 79.02 64.25 0.017 1.452 18.69

Regular_Conv_No_BN_GlorotNorm 87.03 84.46 0.005 0.585 2.95

Regular_Conv_No_BN_GlorotUni 86.89 85.51 0.003 0.403 1.59

Regular_Conv_No_BN_HeNorm 86.20 85.56 0.001 0.228 0.74

Regular_Conv_No_BN_HeUni 86.20 85.89 0.006 0.485 0.36

Regular_Conv_With_BN_GlorotNorm 89.34 86.33 0.005 0.340 3.37

Regular_Conv_With_BN_GlorotUni 88.53 88.33 0.002 0.207 0.23

Regular_Conv_With_BN_ModGlorotUni_Large 60.35 57.03 0.005 1.920 5.50

Regular_Conv_With_BN_ModGlorotUni_Med 84.60 60.08 0.029 3.217 28.98

Regular_Conv_With_BN_HeNorm 86.87 86.30 0.003 0.311 0.66

Regular_Conv_With_BN_HeUni 87.88 86.47 0.004 0.693 1.60

Regular_Conv_With_BN_RandNorm_Large 55.41 45.43 0.009 2.070 18.01

Regular_Conv_With_BN_RandNorm_Med 59.57 56.55 0.001 1.465 5.07

Regular_Conv_With_BN_RandNorm_Small 80.19 68.96 0.017 2.016 14.00

Regular_Conv_With_BN_RandUni_Large 58.69 58.15 0.002 1.577 0.92

Regular_Conv_With_BN_RandUni_Med 67.03 66.15 0.002 1.260 1.31

Regular_Conv_With_BN_RandUni_Small 76.28 75.80 0.002 0.888 0.63



Fig. 2: Vanishing Act! In this figure we can see how the activation ranges of
DWS_Conv_No_BN become increasingly small until they practically disappear. Conse-
quently, gradients are not able to propagate past the fully-connected layers (final three
points on the graph).

DWS_Conv_No_BN_GlorotUni. For illustrative purposes, we keep
the DWS_Conv_No_BN_GlorotUni result and omit the rest. The
normalization introduced by BatchNorm alleviates this issue as ex-
pected. One could consider an additional interpretation of Batch-
Norm as adding capacity to the network in the form of a learned ex-
plicit scaling. Scaling that would otherwise be too difficult for the
convolution parameters to learn in addition to extracting features.
We seek to follow-up on this hypothesis in future works. While we
focus on the variations in quantized behaviour in this work, the vary-
ing FP32 accuracies are also worthy of close study. Our method
sets out a framework through which we can systematically study
these phenomena.

To better understand why we are observing the given quan-
tized behaviour, we can use the proposed fine-grained analy-
sis and inspect the distributions of each model layer-by-layer.
With regards to the significantly improved quantized accuracy
for DWS_Conv_With_BN_RandUni_Large, we observe in Fig-
ure 3 (top) that weights ranges don’t necessarily tell the whole
story. Despite having generally larger weights ranges, we start
to see several other key areas in which the RandUni_Large lay-
ers stand out. For example, while the two He-initialized models
tend to have a spike in the BN-Fold weights range at layer 2, Ran-
dUni_Large actually decreases in range. Furthermore, when we
compare the BN-Fold weights precisions we also see a drop in
precision for the other networks at layer 2 while the precision for
RandUni_Large increases. With the activations, we see that all
of the activation ranges increase at layer 2 while activation preci-
sions decrease. However, RandUni_Large experiences a signifi-
cantly smaller drop in activation precision. Thus, suggesting that
RandUni_Large has a much higher retention of information in those
crucial early stages of low-level feature extraction. Analyzing the
change in the layerwise distributions during training might explain
why we observe such a wide range of behaviour caused by vary-
ing weight initialization. It would also be worthwhile to observe the
relative change in range/precision after BatchNorm folding. This
would be a proxy for observing the distributional shift of the weights.
While it is intractable to pinpoint any single reason, our layer-level
analysis reveals a rich set of interactions that slowly build a detailed
picture of each network’s system dynamics as well as inter-network
trends. We could further expand our analysis to use more rigor-
ous, yet scalable statistical methods of analysis. For example, we
know that a uniformly distributed tensor would best utilize the quan-
tized steps of our given discretization method. Thus, computing the
KL-divergence between a given weight/activation tensor and its cor-
responding uniform distribution (ie. a uniform distribution with the
same bounds as the tensor) is a potential metric to explore. Over-
all, from these initial analyses, we see that taking a fine-grained,
systematic approach to analyzing various design choices can yield
detailed insights on the learning dynamics of a CNN.

6 Conclusion

We conduct the first in-depth, quantitative study of the impact
of weight initialization strategies on final quantized inference be-
haviour of various basic CNN architectures. We show that in ad-
dition to affecting final floating point accuracy, a well-chosen weight
initialization can also significantly affect a CNN’s quantized accu-
racy. Future work includes further exploration of the interaction of
BatchNorm with initial weight distributions, analysis of other intel-
ligent initialization strategies, and analysis of weight initialization’s
impact on more complex architectures.

Fig. 3: A more low-level, focused look. Directly comparing a subset of the architec-
tures. In order from top to bottom, the plots show: weights ranges per layer, BN-Fold
weights ranges, BN-Fold weights precisions, activations ranges, and activation preci-
sions. As we look to analyze any anomalies or unexpected behaviour, our fine-grained
approach allows us to gain much more detailed insight as to what dynamics are at play
when we introduce quantization noise.



References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.

[3] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4,
inception-resnet and the impact of residual connections on
learning,” CoRR, vol. abs/1602.07261, 2016.

[4] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” CoRR, vol.
abs/1506.02640, 2015.

[5] B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer,
“Squeezedet: Unified, small, low power fully convolutional neu-
ral networks for real-time object detection for autonomous driv-
ing,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017, pp. 446–454.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu,
and A. C. Berg, “SSD: single shot multibox detector,” CoRR,
vol. abs/1512.02325, 2015.

[7] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Confer-
ence on Computer Vision (ICCV), 2015, pp. 1440–1448.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” CoRR,
vol. abs/1505.04597, 2015.

[9] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-
CNN,” CoRR, vol. abs/1703.06870, 2017.

[10] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,”
CoRR, vol. abs/1712.05877, 2017.

[11] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” CoRR, vol.
abs/1603.01025, 2016.

[12] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing
deep convolutional networks using vector quantization,” CoRR,
vol. abs/1412.6115, 2014.

[13] S. R. Jain, A. Gural, M. Wu, and C. Dick, “Trained uniform
quantization for accurate and efficient neural network inference
on fixed-point hardware,” CoRR, vol. abs/1903.08066, 2019.

[14] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srini-
vasan, and K. Gopalakrishnan, “PACT: parameterized clip-
ping activation for quantized neural networks,” CoRR, vol.
abs/1805.06085, 2018.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” ser. Proceedings
of Machine Learning Research, Y. W. Teh and M. Titterington,
Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: JMLR
Workshop and Conference Proceedings, 13–15 May 2010,
pp. 249–256. [Online]. Available: http://proceedings.mlr.press/
v9/glorot10a.html

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: Surpassing human-level performance on imagenet clas-
sification,” in 2015 IEEE International Conference on Com-
puter Vision (ICCV), 2015, pp. 1026–1034.

[17] B. Hanin and D. Rolnick, “How to start training: The effect of
initialization and architecture,” 2018.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
CoRR, vol. abs/1502.03167, 2015.

[19] M. Nagel, M. Baalen, T. Blankevoort, and M. Welling, “Data-
free quantization through weight equalization and bias cor-
rection,” in 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2019, pp. 1325–1334.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
CoRR, vol. abs/1704.04861, 2017.

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html

	Introduction
	Background
	Fine-grained Layerwise Analysis
	Experiment
	Discussion
	Conclusion

