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Abstract

Foveation is an important part of human vision, and a number of
deep networks have also used foveation. However, there have been
few systematic comparisons between foveating and non-foveating
deep networks, and between different variable-resolution down-
sampling methods. Here we define several such methods, and
compare their performance on ImageNet recognition with a cus-
tom DenseNet network. The best variable-resolution method per-
formed similarly to uniform downsampling. Thus in our experi-
ments, foveation did not substantially help or hinder object recog-
nition in deep networks. However, a naturalistic foveation method
with continuously varied resolution performed better than a widely
used method with several discrete resolutions.

1 Introduction

The retinas of humans, monkeys, and many other animals have a
high-resolution fovea. In humans, this disproportionate representa-
tion of the central visual field carries through the whole visual cortex,
and eye movements to foveate task-relevant features are an essen-
tial part of vision. Deep convolutional networks are inspired by the
primate visual system, but they usually lack foveation, which may
be a limitation in some contexts. In humans, foveation allows both
the wide field of view needed for tasks like visual navigation, and
the high resolution needed for tasks like reading, without impracti-
cal brain size or metabolic cost. Foveation could potentially provide
similar benefits in artificial systems, particularly mobile and edge-
computing systems. Some previous studies have used a rough
approximation of natural foveation made up of several distinct im-
ages at different resolutions, e.g. as in [1]. In contrast, resolution
changes gradually in natural systems. This may have benefits, but
it is not clear how to arrange such a representation for input to a
convolutional network. A circular image with high magnification at
the centre wastes pixels at the corners. A polar representation does
not, but it sacrifices translational equivariance. In summary, while
foveation could potentially have benefits for deep networks, it is not
clear when, or how best to implement foveation.

To help fill this gap, we compare several foveated downsam-
pling approaches to uniform downsampling in object recognition. In
this context, the different foveated methods perform fairly similarly
to each other, and the best performs roughly the same as uniform
downsampling (top-1 validation accuracy 62.7% vs. 62.6%; Table
1). Therefore, foveation does not seem to be important for object
recognition, which is unsurprising given the good performance of
standard deep networks, but it does not substantially interfere ei-
ther. This suggests that foveation could be incorporated into more
general vision systems that perform multiple tasks, such as in robots
that must recognize objects and also read text in the environment.

2 Methods

2.1 Network architecture and training

We trained deep networks on the ImageNet recognition task, with
various kinds of downsampled images as input. In each case we
used a version of the DenseNet [2] architecture network. It is si-
miliar to the DenseNet-121 architecture with some modifications to
account for the fact that the images are downsampled as a pre-
processing step. The kernal size of the initial features is changed
to a dimension-preserving value of three (down from seven) and
the subsequent max pooling layers are removed. The first Dense-
Block of size 6 is also removed. The original hyperparameters and
training procedure are used, including random horizontal flips, batch
size etc. We trained each network for 90 epochs, using SGD (initial
learning rate 0.1, reduced by 10x every 30 epochs).

Fig. 1: Estimate of retinal ganglion cell (RGC) density as a function
of degrees from the fovea. We use estimates from [3], which pro-
vides data along the nasal-temporal axis. [4] shows that density is
similar in temporal, dorsal, and ventral directions, but higher in the
nasal direction. To calculate radially symmetric mean values, we
sum nasal and temporal fits from [3] with weights 0.25 and 0.75 (to
account for the fact that nasal density is atypical).

2.2 Downsampling techniques

Uniform downsampling: As a baseline method, ImageNet images
were uniformly box-downsampled to a 32x32 resolution.

Multi-resolution downsampling: We produced a simple foveated
representation composed of four 16×16 downsampled images with
different magnifications. The first spanned the whole image, the
second spanned the central half of the width and height of the im-
age, the third a quarter the width and height, and the fourth an
eighth. Several past papers have used a similar approach, e.g. [1].

Polar retinal downsampling: We sampled the image in polar co-
ordinates, creating a rectangular image (44×23 pixels) in which the
long edge corresponded to the angle and the short edge the radial
distance from the fovea. The density of samples in the radial direc-
tion declined with greater distance from the centre. We based the
sampling density on retinal ganglion cell (RGC) density (see Fig-
ure 1). We used gaussian filters with radially increasing widths to
reduce artifacts. See example in Figure 2.
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Fig. 2: An example of polar-retinal downsampling. (a) The focal
point (highest saliency) is determined (red dot). (b) The image
is then cropped so the center is at the focal point. (c) The im-
age is then ’foveated’ resulting in pixels closer to the center be-
coming over-represented while pixels close to the edge are under-
represented. In this case, the white area on the left of the foveated
image is representing the white pixels inside the loop of steel wire
of the source image. (d) The result is downsampled uniformly.

Cartesian retinal downsampling: We sampled the image with
the same radially-varying density as above, but created a circular
image with strong barrel distortion (Figure 3), rather than a polar
representation. This resulted in a transformation that better retains



the translational equivariance property of convolutional networks, at
the cost of wasting pixels in the corners.

Fig. 3: An image before and after cartesian-retinal downsam-
pling. Much like polar foveation, the center of the image is over-
represented in the downsample while the extremities are under-
represented, proportional to RGC density data.

2.3 Selection of image points to foveate

A saliency map was generated for each image with a DeepGaze II
model [5]. This map estimated the likelihood of a human orienting
to each pixel. Human gaze often orients to areas of interest such as
faces and foreground objects, which often correspond to the target
label. We selected the point of highest saliency, subject to a con-
straint that avoided points near image edges (as selecting a point
near the edge would render much of the crop blank). Specifically,
we only chose points around which at least 80% of a 256×256-pixel
crop would fall within the image boundaries (Figure 4). If the re-
sulting crop went outside the image boundaries, we extrapolated by
copying edge pixels.

We chose three of the top saliency points in every image. The
highest-saliency points are typically close together, and contain sim-
ilar information. To avoid selecting multiple similar points, we mod-
ified the saliency maps after each selection. Specifically, we sub-
tracted a square-gaussian function from the saliency map, with a
peak equal to the saliency at the chosen point, and a width of 60
pixels.

a) Saliency output of
DeepGaze II

b) The ineligible re-
gion in purple

c) Saliency map
clipped to remove
ineligible areas

Fig. 4: The process of finding a valid saliency map from which the
point of highest saliency is chosen. (a) A DeepGaze II model deter-
mines a general saliency map. (b) An ineligible region is identified
(in purple) where points would result in too much of the resultant
crop (20% or more) falling outside the image. (c) The saliency map
is clipped and normalized before points are chosen.

3 Results

Figure 5 shows training curves for each of the downsampling meth-
ods. During training, each crop surrounded one of the three most
salient points (with sequential updating of the salience map, as de-
scribed in the Methods) at random. Table 1 summarizes validation
performance of the trained models. Predictions were based on all
three foveations for each image (logits averaged across foveations).

4 Conclusion

The cartesian foveation method performed best in this study. Each
of the foveated methods has a limitation that could potentially be
improved in future work. The polar mapping sacrificed translational
equivariance (e.g. the same edge detector could respond to a ver-
tical edge at the bottom of the image and a horizontal edge at the

Table 1: Performance on the validation set

Model Top 1 Accuracy Top 5 Accuracy
Uniform 62.7 83.7
Polar-Retinal 59.8 81.1
Cartesian-Retinal 62.6 83.5
Multi-Resolution 60.2 81.6

side). This might be mitigated in the future by building rotational
equivariance into the network, e.g. as in [6]. The cartesian rep-
resentation wasted pixels at the corners of the image, which limits
computational efficiency. Our version of the multi-resolution repre-
sentation arranged resolutions side-by-side, which introduced edge
effects. The resolutions could also be treated as separate input
channels. We did not do this because we wanted to hold constant
the numbers of parameters and sizes of the representations across
models.

We did not find an advantage of foveated imaging in image
recognition, but the results provide important information for sev-
eral other lines of work. Foveation can be beneficial for certain
other tasks in robotics, e.g. [7, 8]. However, image recognition is
an important part of many tasks, so the effect of foveation on image
recognition performance may affect the contexts in which these ben-
efits can be realized. Relatedly, the good performance of cartesian
downsampling supports our ongoing work to develop a foveated
lens that can produce a higher-resolution, non-downsampled im-
age with a similar pattern of distortion [9]. In the future, we also
hope to incorporate cartesian foveation into convolutional-network
models of the primate visual system, building on [10] (and see [11]
for related work). The good performance of cartesian downsam-
pling supports this type of input distortion as a means of modelling
physiological foveation and cortical magnification within a convo-
lutional network. Finally, recent work [12] has shown that small
image patches are sufficient for state-of-the-art image recognition,
if the patches are chosen via reinforcement learning rather than a
saliency model. It would be worthwhile to compare the performance
of this approach, as well as other visual attention methods, using
foveated image patches.

Fig. 5: Top 1 and Top 5 validation accuracy during training
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