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Abstract

In this study, a learning-based scale estimation technique is pro-
posed to enable quantitative evaluation of inspection regions. The
underlying idea is that surface texture of structures (i.e. bridges
or buildings) captured on images contains the scale information of
the corresponding images, which is represented by pixel per phys-
ical dimension (e.g., mm, inch). This allows training a regression
model that provides a relationship between surface textures on im-
ages and their corresponding scales. Deep convolutional neural
network is used to extract scale-related features from the texture
patches and estimate their scales. The trained model can be ex-
ploited to estimate scales for all images captured from structure
surfaces that have similar textures. The capability of the proposed
technique is fully demonstrated using data collected from surface
textures of three different structures and achieves an overall aver-
age scale estimation error of less than 15%.

1 Introduction

With the recent advancements in vision sensors and computer vi-
sion algorithms, several data collection and feature extraction meth-
ods have been developed to enhance the vision-based inspection
tasks of civil structures (i.e. bridges and buildings) in terms of ac-
curacy and speed. These techniques typically involve collection
and analysis of visual data involving structure component damage
detection, localization, and quantification, of which comprehensive
overviews are available in [1–3].

Despite tremendous effort made to advance visual inspection
techniques through automated methods, its implementation in the
industry remains limited. One of the factors inhibiting industry adop-
tion is that damage detected on images cannot be quantitatively
evaluate because their scales are unknown. We could utilize spe-
cial equipment (i.e. stereo camera) or processes (i.e. including
markers of known dimension in the inspection scene), but they in-
cur either extra costs or time. Knowing the image scale (a pixel per
length ratio) is important, as it allows for computation of physical
dimensions of the detected structure damage and/or component.

To address this issue, a convolutional neural network (CNN)
based image scale estimation technique is proposed to enable
quantitative visual inspection by automatically estimating the scales
of the collected images. The underlying idea of the proposed scale
estimation is that surface textures convey scale information of the
images. Thus, the surface texture to scale relationship can be
learned through the use of a CNN. The estimated image scale (a
pixel per physical dimension, in units, pixel/mm or pixel/in.) enables
physical measurement directly from a single image. This technique
would help enable quantitative automated visual inspection for ex-
isting visual inspection techniques.

2 Methodology

The proposed scale estimation technique aims to enable quanti-
tative visual inspection using a single image. A key assumption for
the proposed approach is that the scene of surface texture is unique
at each image scale, and thus allows for their scale information to
be determined. A CNN-based regression model is trained to extract
the scales from surface textures. If users take images of scenes that
include surface textures, which are similar to the one for training the
model, the scales of the images can be estimated using the surface
textures to measure the size of the inspection region on the col-
lected images. This technique can be integrated into existing visual
inspection algorithms that automatically detect areas of interest to
enable a fully automated procedure that perform damage detection,
localization, and quantification with the use of only images.

The overview of the technique is shown in Fig. 1. The technique
is separated in two phases: model training and usability. For the
first phase (model training), in step 1, surface texture scenes of
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Fig. 1: Step-by-step procedures of (a) model training and (b) usabil-
ity phases for image scale estimation.

the structure-of-interest are collected with the marker included at
varying distances. In step 2, an existing marker detection algorithm
[4, 5] is used to extract image scale and patches of surface texture
rapidly and accurately from the image to form the training set. In
step 3, the model is trained on the texture-image scale pairs.

Once the scale estimation model is trained, the technique can
be utilized as shown in the usability phase. In step 1, the user takes
images containing regions-of-interest (ROI) (i.e. spalling or cracking
damages). In step 2, ROIs are manually or automatically detected.
At this step, the ROIs can be quantified in terms of pixels. In steps
3 and 4, patches surrounding the ROI are extracted, fed into the
model sequentially, and the estimated image scales averaged to
compute the corresponding image. In step 5, the estimated image
scale is used to quantify the detected ROIs by translating pixel area
and length measurements found in step 2 into physical dimensions.

Note that since we assume that the entire region of the image
has a single identical scale, the image should be captured parallel
to the flat surface where damage is placed.

3 Experimental Setup

The technique is validated with respect to the following aspects:
• relationship between image size of surface textures and the

model accuracy; and
• algorithm robustness across various structures, each having

different surface textures.
Note that all images unless otherwise mentioned are collected at a
fixed focal length, and that the marker is also included in the testing
images for validation purposes only, and is not required during the
usability phase.

Images are collected from three different civil structures having
different surface textures. These structures are located on the Uni-
versity of Waterloo’s main campus in Waterloo, Ontario, Canada, as
shown in Fig. 2. Many images of each structure are taken at various
locations and distances. The distance is randomly chosen roughly
from 0.5m to 2.5m. During data collection, the entire area of the
marker is fully included in each image and the image is captured
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Fig. 2: Overviews of structures with different textures (a) pedes-
trian bridge (PED), (b) building wall (BW), and (c) asphalt pavement
(ASH)
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Fig. 3: Two sample images and their corresponding patches, taken
at a (left) close and (right) far distance for datasets (a) PED, (b) BW,
and (c) ASH

in such way that its position on the image is randomly located. We
collect the images relatively perpendicular to the scene. Examples
of the three collected datasets are shown in Fig. 3.

A well-known CNN architecture, MobileNetV2 [6] is used as the
base model with input size 299-by-299 while the top layer is config-
ured for regression to enable image scale estimation from an input
image, using mean average percentage error as the loss function,
as shown in Eq. 1,

MAPE =
1
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n
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yi

∗100 (1)

where yi and ŷi is the actual and predicted image scale for a given
patch, and n is the number of patches in a given set. Data aug-
mentations such as random intensity changes (±50), brightness
changes (±20%), and horizontal and vertical flips were added.
Stochastic gradient descent optimizer with learning rate, momen-
tum, and stochastic decay of 10−4, 0.9, and 0.01 were used.

The performance of the technique is examined in three different
experiments, as follows:

• using patches with different sizes, 100X100, 350X350, and
850X850; and

• training and testing model performance using different unique
surface datasets, PED, BW, and ASH.

Prior to training the model, the dataset is split into training and test-
ing sets where the model is trained on the training set and validated
against the testing set. Note that to prevent leakage of training im-
ages into testing images and vice-versa, the datasets were split by
scenes instead of by images. A single scene corresponds to a spe-
cific surface area on a structure, and contains several images taken
at different distances of the same scene. Thus, by splitting the train-
ing and testing datasets by scenes, the model’s performance can be
assessed correctly. An overview of the collected datasets is shown
in Table 1.

4 Experimental Result

The results of the experiments are shown in Fig. 4, 5 and Table 2.
First, the effect of using different patch sizes are evident from Fig.

Table 1: Scale prediction results for all three structures using patch
size 850X850: aggregated using either a mean or median function.

Total number o f scenes
(training/testing)

Total number o f images
(training/testing)

PED 22 (18/4) 191 (154/37)
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BW 14 (12/2) 434 (352/82)
ASH 21(17/4) 182(149/33)
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Fig. 4: Effect of patch size on model accuracy, showing (a) Train-
ing and (b) testing loss curves on a log-linear plot for patch sizes:
100×100, 350×350, and 850×850 using the PED dataset.

4, which shows MAPE loss curves for (a) training and (b) testing
datasets. From the figure, it is obvious that larger patch sizes lead to
the model converging at lower MAPE, since larger patches contain
more texture information than do smaller patches which are more
prone to error due to local variations in texture or lighting. Thus, it
is recommended to use the largest possible patch size.

An actual-to-predicted (AtP) scale scatter plot of PED testing
dataset is shown in Fig. 5 which directly shows the performance of
the model. In 5a, each point is the predicted image scale for a sin-
gle patch, while 5b shows the median-aggregated image scale for
a single image. The black dotted line follows the 1:1 ratio between
actual and predicted scale which indicates a perfect model predic-
tion. The inner-dashed band and the outer lightly coloured band
are, in order, the 10% and 20% error margins. Only the median-
aggregated plot is shown as no significant visual differences were
observed between the two aggregation functions. It is easy to see
that while the absolute value spread of the image scale predictions
increase as the scale value increases, a majority of the model pre-
dictions stay within the 20% error margins.

The scale prediction results for all datasets are summarized in
Table 2. The mean and median functions were used to aggregate
several patch scales to a single image scale, and the values in the
table are represented as mean values with their standard deviation
and median values with their median absolute deviation. The per-
formance of either aggregation is very similar to each other. Most of
the model results perform on-average, with MAPE lower than 15%.

(a) (b)

Fig. 5: Actual-to-Predicted scale scatter (AtP) plots obtained from
the PED training dataset using patch size 850X850: (a) scales for all
patches, and (b) aggregated scales for each image using a median
function. The black dashed line indicates a correct prediction and
inner-dashed and outer-colored bands indicate 10 and 20 % error
margins, respectively.



Table 2: Scale prediction results for all three structures using patch
size 850X850: aggregated using either a mean or median function.

Aggregation
Mean Median

PED 6.7%±4.0% 7.3%±4.5%
D
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BW 15.8%±13.6% 14.1%±11.9%
ASH 10.5%±8.4% 9.9%±8.3%

5 Conclusion

To enable quantitative assessment of detected ROIs, a CNN-based
image scale estimation technique is developed. This technique es-
timates image scale from the unique texture information from the
structure surface in images collected during inspection. A CNN
model is trained to resolve visual surface textures to their corre-
sponding image scales. Markers and relevant detection algorithms
were used to automatically detect the marker in each image scene
to estimate the image scale and extract patches from non-marker
regions to form the ground-truth texture and image scale dataset.
This dataset then is used to train the model, which, once trained,
can be used to estimate scale for any image containing similar tex-
tures for quantitative evaluation of ROIs. The model performance
is demonstrated using images collected from three different struc-
tures as training and testing datasets. On average, the model suc-
cessfully estimates image scale solely by inferring from the surface
texture, with less than 15 % error across all testing datasets.
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