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Abstract

Why can’t Neural Networks (NN) forecast better? In the major
super-forecasting competitions, NN have typically under-performed
when compared to traditional statistical methods. When they have
performed well, the underlying methods have been ensembles of
NN and statistical methods. Forecasting stock markets, medical, in-
frastructure dynamics, social activity or pandemics each have their
own challenges. In this study, we evaluate the strengths of a collec-
tion of methods for forecasting pandemics such as Covid-19 using
NN, statistical methods as well as parameterized mechanistic mod-
els. Forecasts of epidemics can inform public health response and
decision making, so accurate forecasting is crucial for general pub-
lic notification, timing and spatial targeting of intervention. We show
that NN typically under-perform in forecasting Covid-19 active cases
which can be attributed to the lack of training data which is common
for forecasts. Our test data consists of the top ten countries for ac-
tive Covid-19 cases early in the pandemic and is represented as a
Time Series (TS). We found that Statistical methods outperform NN
for most cases. Albeit, NN are still good pattern finders and we sug-
gest that there are perhaps more productive ways other than purely
data driven models of using NN to help produce better forecasts.

1 Introduction

"Prediction is very difficult, especially about the future" (Nils Bohr).
A TS is a collection of data where the independent variable is

time. TS forecasting is an important application for financial analysis
(e.g., stock markets, sales, economic), medical analysis (e.g., ECG,
drug reactions, pandemics, elderly care), civil infrastructure (e.g.,
bridge vibrations, road conditions, electricity demand), environmen-
tal monitoring (e.g., air, water pollutant monitoring), sensor network
monitoring, social activity mining to name a few. The forecasting of
TS data helps to provide useful information for important decision
making. Methods for forecasting include traditional methods such
as parametric models informed by domain expertise (either com-
partmental or network), statistical methods and recently NN data
driven models including deep learning methods. Forecasts can be
either one-step-ahead or a multi-horizon TS variety.

The consensus in the forecasting community is that "neural net-
works (and other highly non-linear and non-parametric methods)
are not well suited to TS forecasting due to the relatively short na-
ture of most time series" (Rob Hyndman on M-challenges 2018).
The M-competitions (https://mofc.unic.ac.cy/m4) are the most influ-
ential forecasting competitions and the testing data consists of 100K
series of various frequencies. In general, NN are great for learning
complex patterns when sufficient numbers of TS are available to
learn from however these conditions do not hold for all applications
including forecasting. Forecasting sometimes is geographically and
temporally localized meaning that only one TS is available for learn-
ing which is not desirable for a NN to function well. NN have shown
great promise in applications ranging from computer vision to natu-
ral language processing. Forecasting is special in that it has chal-
lenges of scaling, probability distribution outputs, sample efficiency
and incorporation of prior knowledge. Statistical and NN models
are both data driven yet statistical methods still on average outper-
form NN models. Some domains such as pandemic modelling have
also been modelled using parameter based differential equations.
The difficulty of these parameterized models is that it is difficult to
estimate the parameters. Simulations have also been conducted
which are governed by these parameterized models. Given that for
pandemic modelling, there are modelling options such as parame-
terized models, statistical and NN forecasting methods, exclusivity
does not make a lot of sense as each of these methods can benefit
from the strengths of others. Ensembles of solutions from various
techniques have been used with good success in the M4 compe-
titions however explainable and innovative combinations of these
various methods is an opportunity.

2 Time Series Forecasting

TS forecasting is about predicting future values of a target yi,t for a
given entity i at time t. Each entity represents an organized grouping
of temporal information that can be observed at the same time such
as vital signs form different medical patients or the vibrations from
an automobile. A one-step-ahead forecasting model, which is the
simplest case, takes the form in Equation 1.

ŷi,t+1 = f (yi,t−k:t ,xi,t−k:t ,si) (1)

,where ŷi,t+1 is the model forecast, yi,t−k:t are the observations of
the target and xi,t−k:t are the exogenous inputs; all of this data is
over a look-back window k. si is static metadata associated with the
entity, for example the sensor location. f () is the prediction function
learnt by the model. The equations are given for uni-variate fore-
casting (i.e., 1D targets) however all of the notation can be easily
extended to multi-variate models. In addition, multi-horizon fore-
casting slightly revises the one-step-ahead model to the form given
by Equation 2.

ŷi,t+τ = f (yi,t−k:t ,xi,t−k:t ,si,τ) (2)

,where τ ∈ {1, ...,τmax}.
The approaches for TS forecasting range from fitting the pa-

rameters of mechanistic models to statistical methods using either
compartmental or agent methods and recently machine learning in-
cluding NN approaches.

3 Mechanistic models: Pandemic Modelling

A mechanistic or compartmental model of describing the propa-
gation of ILI (Influenza Like Illness) can follow many different pro-
cesses. Examples include models such as Susceptible-Infectious
(SI), Susceptible-Infectious-Susceptible (SIS), Susceptible-
Infectious-Recovered/Immune (SIR) and an extension to SIR
called Susceptible-Exposed-Infected-Resistant (SEIR). SI is a
two-state model with a one-way transition from Susceptible to
Infected and no recovery after infection and is used to model
HIV or herpes simplex virus type 2 (HSV-2). SIS is a two-state
model where recovery does not induce immunity so individuals
can transition both ways between susceptible and infected states
and is used to model the common cold and curable STIs (Sexually
Transmitted Illnesses) like gonorrhea. SIR is a three-state model
with an additional one-way transition from infected to recovered with
immunity and is used to model diseases like measles. SEIR adds
an initial stage of infection, the E (Exposed) compartment. During
the Exposed phase, individuals experience a long incubation
duration in which the individual is infected but not yet infectious.
Examples of this type of disease include Ebola. Both SIR and
SEIR have been used to model Covid-19 [1–3]. The SIR model is
governed by Equations 3-5 while the SEIR model is governed by
Equations 6 & 7.
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The SIR model assumes a population of size N where S is the
total number of susceptible, I is the number of infected and R is the



number of resistant. Deaths are viewed as a subset of resistant,
which is reasonable for a small death rate. β is the transmission rate
constant, γ is the recovery rate constant, R0 =

β

γ
is the reproduction

number and a is the inverse of the average incubation time. SEIR
has been shown to predict the death rate well in the 1918 pandemic
while the SIR model has shown to predict influenza cases well. Un-
fortunately, these models have several sources of uncertainty, in-
cluding parameter uncertainty, variation based on data or model
type used, even uncertainty in the data being collected to validate
the model, uncertainty in the severity and length of social distancing
measures and the parameters can vary drastically by location [1]. In
general, the behaviors and interactions between viruses, hosts and
the environment all play a part in determining the disease transmis-
sion. Surveillance data is typically imperfect, reported with delay or
missing [4]. There is other uncertainty including biological and med-
ical facts (relevance of viral load for chronic-degenerative disease,
obesity) and vagueness in medical care structures [5].

One way to solve for the process model is to estimate the pa-
rameters by fitting the differential equations to data. Numerical
methods such as Euler’s method or Runge-Kutta method are used
to solve the ordinary differential equations to get a solution. The
fitting of a dynamical epidemiological model, e.g., SIR process, is
done by using least squares, optimization algorithms or likelihood
[6, 7].

Deterministic Compartment Models (DCMs) solve differential
equations representing analytic epidemic systems in continuous
time. The fixed mathematical functions of input parameters and
initial conditions define the models as Deterministic. The models
are compartmental as they divide the population into groups rep-
resenting discrete disease states (e.g., susceptible, infected). ICM
(Individual Contact Models) differ from DCMs in that the parame-
ters are stochastic random draws (rates and risks governing state
transitions are random draws from distributions), time is discrete
and units are individuals (versus DCMs that treat populations as an
aggregate).

Network models (i.e., agent based models) for example, mod-
elled with EpiModel [3], represent contact phenomena within and
across dyads (pairs of individuals who remain in contact) over
time. EpiModel uses "separable-temporal exponential-family ran-
dom graph models STERGMs (Spatial Temporal Exponential Ran-
dom Graph Models) to estimate and simulate complete networks
based on individual-level, dyad-level, and network-level patterns of
density, degree, associative, and other features influencing edge
formation and dissolution". A network model consists of elements
(actors in the model), states (attributes of system elements) and
transitions (movement rate between states). The domain of net-
works can either be human social networks (links can be contact,
exchange, affect, role-based, genetic), animal networks (links can
be contact, movement, genetic), institutional networks (links can be
hospital patient transfer, goods, money) or multi-level designs. The
states or attributes of the elements can either be infection related
(susceptible, infected, recovered), demographic (sex, age), behav-
ioral (level of sociability, occupation), clinical (tested or not, treated),
geospatial (community, coordinates) and others. The transitions
can either be deterministic (a fixed rate of transition between states)
or stochastic (probability rate of transition). Using a model such as
SIR makes assumption among individuals which does not neces-
sarily hold true in the real world. Incorporating some commonly
observed networks patterns such as heterogeneity in the number
of contacts per individual and the clustering of contacts affects be-
haviors of the model such as the speed of the disease spread, long
run health outcomes and the effect of disease on economic activ-
ity [8]. This also holds for interventions such as social distancing
and vaccinations. As an example of network modelling, epidemic
dynamics can be modelled as a diffusion process on a specific uni-
directed contact network G(V,E) on a population V of nodes, each
edge e = (u,v) ∈ E implies that individuals u,v ∈V come in contact.
An infection can be spread from u to v along edge e(u,v) with a
probability β (e, t) at time t after u becomes infected conditional on
node v remaining uninfected until time t. The dynamical system
initiates with at least one or more nodes in state I (infected) and
reaches a point where all nodes are in states S (susceptible) or R
(recovered) for a SIR model [9]. One such model for Covid-19 was
put forward by Ferguson at Imperial College that brought attention
to the severity of the upcoming Covid-19 pandemic [10].

Mechanistic models are also referred to as causal models. On
the positive side, they employ mathematical disease models and
make multi-fidelity predictions. The models capture an aspect of

human decision making and provide paths for counterfactual fore-
casts. Unfortunately they can be computationally expensive due to
the requirement of estimating parameters from a high dimensional
space. For the case of network models, obtaining the required data
for a realistic social network can be difficult [11].

4 Statistical Models

Statistical methods, also referred to as classical methods [12], in-
clude both linear and non-linear models such as Koopmans model
[13]. Most of the winners of the influential forecasting competitions
including the M4, M3 and Tourism datasets have seen statistical
methods, winning more often than average, however, recently there
have been some machine learning winners [14]. However, most
of the winners in these competitions have actually been ensemble
methods, usually statistical and machine learning approaches com-
bined. The strength of ensembles is their diversity.

The most naive method of forecasting, the random walk fore-
cast, predicts the future values of the time series based on the last
known observation:

ŷn+h = yn (8)

There is some empirical evidence that the random walk forecast
provides a reasonable fit for financial data [15]. NN typically do well
with financial data and the knock against them is that they appear
to be only modelling a random walk. The seasonal naive model
bears similarity to the naive model except that it is based on the last
observed value in the same season.

ŷn+h = yn+h−m (9)

The ARMA (Auto-Regressive Moving Average) combines two tech-
niques AR(p) and MA(q). The AR(p) model estimates the value of
a given time series yn by using a linear combination of the past p
observations with an error term εn and a constant term.

yn = c+
p

∑
i=1

φiyn−i + εn (10)

where φi∀i ∈ {1, ..., p} are the model parameters and p is the order
of the model. The MA(q) model is based on past errors.

yn = µ +
q

∑
i=1

θiεn−i + εn (11)

where µ is the mean of the observations, θi,∀i ∈ {1, ...,q} are the
parameters of the models and q denotes the model order. The
ARMA(p,q) model is a combination of the AR(p) and MA(q) mod-
els.

yn = c+
p

∑
i=1

φiyn−i +
q

∑
i=1

θiεn−i + εn (12)

The ARMA(p,q) model is defined for stationary data however real
world data exhibits non-stationary behavior. ARIMA(p,d,q) model
overcomes the non-stationary typically exhibited by trend and sea-
sonality by including an integration parameter of order d. ARIMA
applies d difference transformations to the time series before apply-
ing ARMA(p,q). A simplification of the ARIMA model is based on
the observation that it can be rewritten as [16]:

y′t = c+φ1y′t−1 + ...+φpy′t−p +θ1εt−1 + ...+θqεt (13)

where y′t is the differenced series. This is called the ARIMA(p,d,q)
model where p is the order of the auto-regressive component, d is
the degree of the first differencing involved and q is the order of the
moving average component. Special cases of the ARIMA model
include white noise (ARIM(0,0,0)), random walk (ARIMA(0,1,0)
with no constant), random walk with drift (ARIMA(0,1,0) with
a constant, auto-regression (ARIMA(p,0,0)) and moving average
(ARIMA(0,0,q)). Rearranging the terms and expressing ARIMA in
backshift notation [16] results in:

(1−φ1B− ...−φpBp)(1−B)dyt = c+(1+θ1B+ ...+θqBq)εt (14)

,where AR(p) is the first term on the left hand side and d differences
are the second term while the right hand side is just MA(q).

Other statistical methods include TBAT (which is a combina-
tion of Trigonometric seasonal formulation, Box-Cox transformation,



ARMA errors and Trend component) and HWASS (Holt-Winters ad-
ditive model) [17]. TBAT is effective for maximum likelihood estima-
tion and handles seasonal data, has a larger parameter space than
ARIMA and better handles non-linearities. HWASS handles trend
and seasonality well however it is sensitive to the choice of initial
values and is sensitive to anomalies. ARIMA is usually still a strong
statistical method however variants such as TBAT and HWASS and
others have strengths. Methods other than ARIMA are usually en-
sembles or variants of ARIMA. There are other packages such as
Facebook’s Prophet. Prophet is an additive regressive model that is
able to automatically detect trends and seasonal changes. Parame-
ter estimation is handled probabilistically and parameter uncertainty
is handled using the Hamiltonian Monte Carlo algorithm. Statistical
methods learn patterns from the TS, are easy to implement and are
fast to train and forecast [11]. Unfortunately they also assume a
simple input and output relationship and are unable to make het-
erogeneous high resolution forecasts.

5 Neural Network Models

Recently, a deep learning method called N-BEATS [14], a neural ar-
chitecture based on backward and forward residual links and a deep
stack of fully-connected layers has shown good results on the stan-
dard M4 datasets. Another method called DeepAR [18] is based
on an auto-regressive neural network for probabilistic forecasting in
the form of Monte Carlo samples to calculate consistent estimates
in the forecasting scope, not assuming Gaussian noise. Gluonts is a
probabilistic time series modeling toolkit, focusing on deep learning-
based models based on MXNET (ts.gluon.ai); our implementation
of DeepAR is taken from this toolkit. Recently, a method called
TDESFI [11] uses an agent based simulation model to train a neural
network. At a coarse resolution (state, county levels), the technique
outperforms standard statistical methods. TDESFI uses a network
model to provide synthetic data for training. If a network model can
provide synthetic data for training then it can also provide forecasts
as well, negating the advantage of TDESFI.

TS data augmentation to provide sufficient training data to avoid
over-fitting can be categorized into basic and advanced approaches
[19]. Basic approaches include cropping, flipping, warping, jitter-
ing and perturbing in either the time, frequency or combined do-
mains. Advanced approaches include decomposition, model or
learning approaches. Learning approaches either are embedding
space, GAN (Generative Adversarial Networks) approaches or the
use of RL (Reinforcement Learning) or meta-learning. TDEFSI is
a model based approach. Concerns about neural network meth-
ods include the dependence on a large amount of training data, the
inability to make heterogeneous high resolution forecasts, the in-
ability to include domain expertise, the lack of explainable results
and over-fitting is a concern due to the usual availability of only a
small size of training data [11]. Neural networks require lots of data
to estimate the parameters of the network. Data in this context refer
to the number of series but the number of observations [20]. Ma-
chine learning models including NNs can benefit when larger TS
are available with large and high frequency data [15]. As with other
ML interests, topics of interpretability, explainability and causality
are relevant for TS forecasting. TS also have hierarchical structure
with logical groupings between trajectories, for example trends that
are not handled well by NN [21]. Computational requirements are
considerably greater for NNs when compared to statistical meth-
ods [22]. It has been shown that machine learning including NN
approaches improve predictability when sample training size grows
[15]. Super-forecasting [23],[24] shows that humans can do quite
well providing forecasts by relying on domain expertise which both
statistical and NN do not as they are purely data driven. NNs also
require TS to be discretised at regular intervals making it difficult to
forecast when observations are missing or arrive at random inter-
vals [21]. It should be noted that NNs are not always the most ap-
propriate choice for long-range macro-economic forecasts or other
problems requiring external domain knowledge not learn-able from
the data [20]. It has been found that typically ML methods do not
stack well in terms of both accuracy measures and forecasting hori-
zons [22].

NNs are good at learning patterns from historical data and are
able to capture non-linear input output relationships [11]. As men-
tioned earlier, they need a large amount of training data, are un-
able to make heterogeneous high resolution forecasts, lack explain-
ability and overfitting is a possibility if insufficient training data is
presented. Hybrid methods that combine data driven (Statistical,

Fig. 1: Covid-19 cases: 4 of the 10 top countries: as a % of popu-
lation

NN) and mechanistic methods have the possibility to integrate all
their strengths and epidemic forecasting is a good domain to test
this. The TDESFSI method is one such hybrid method however it
appears that the synthetic training data obtained from a network
method is only capturing the probability distributions and unknowns
which could also be captured with a network method by itself. There
must be a better way to integrate different methods.

Interesting methods that incorporate state models into neural
network forecasting include ones with a particle filter [25] or Kalman
filter [26]. Forecasting may also be better served by using features
as opposed to raw time series data [27–29]

6 Experiments

Based on the implementation of [17], six approaches are applied to
a Kaggle dataset of Covid-19 data [30]. Of the six approaches, 4
are statistical based (ARIMA, HWAAS, TBAT, Prophet) while 2 are
neural networks (N-Beats, DeepAR). Ten countries with the greatest
number of total confirmed cases in the period of April to May 2020
were chosen as the dataset. Each TS model was trained, evaluated
and tested using a TS representing a percentage of active cases
with respect to the total population of the relevant country. For train-
ing and validation purposes, 72 instances were used for training, 25
for validation and a window of seven days was used for prediction.
Figure 1 illustrates the active cases for the top ten countries as a
percentage of active cases with respect to the total population.

The forecasting results for each country represented in terms of
RMSE (Root Mean Squared Error) are shown in Table 1. The ta-
ble shows that there is no one size fits all for the forecasting results.
From the table, it is evident that the statistical methods (i.e., ARIMA,
TBAT, HWAAS) in general out perform the deep learning NN ap-
proaches (N-beats, DeepAR) in 8 out of 10 instances. As men-
tioned earlier, this could be a result of a lack of high volume training
data that NN approaches require to perform well. Unfortunately for
the task of forecasting where the data is localized temporally and
geographically does not necessarily allow this. Figure 2 shows



country ARIMA HWAAS TBAT N-Beats DeepAR
US 0.0074 0.1729 0.0098 0.0369 0.0448
Spain 0.0800 0.0314 0.0292 0.0369 0.1088
Italy 0.0056 0.0066 0.0058 0.0086 0.0435
UK 0.0054 0.0043 0.0043 0.0376 0.0376
France 0.0608 0.0110 0.0070 0.0042 0.0105
Germany 0.0064 0.0371 0.0033 0.0131 0.0575
Russia 0.0015 0.0022 0.0021 0.0270 0.0344
Turkey 0.0044 0.0008 0.0019 0.0182 0.0938
Brazil 0.0041 0.0057 0.0056 0.0057 0.0028
IRan 0.0026 0.0010 0.0004 0.0037 0.0022

Table 1: RSME with Different Prediction Methods

Fig. 2: Predicted Active Cases for US using Different Methods

the forecast results for US data for the various methods. TBAT
and ARIMA appear to be the best performing techniques overall
in terms of RMSE. ARIMA was superior with respect to RMSE in
the US, Italy and Russia. The NN methods appeared to show good
results for the data from France and Brazil. There are so many
factors that can help explain why some methods performed better
than others including climate, geographical culture, varying popula-
tion densities, testing and measuring differences as well as variety
in social distancing measures, quarantine in terms of timing, during
and severity of measures acted upon. It is quite possible that the
NN methods work best only on the Brazil and France data because
of the random walk nature of the data (see Figure 1), which has
been found to be a trait of NN methods forecasting financial data.

7 Discussions

Superforecasters [24] rely on domain knowledge and perhaps data
driven techniques should also utilize this expertise if available.
There are opportunities to improve data driven approaches with
state space models using Kalman [26] and Particle Filtering [25].
The NN approach called TDEFSI [11] utilizes a network simulation
to provide synthetic input to train a network to forecast. An interest-
ing approach however, if the data is already simulated why not just
simulate further into the horizon. New approaches that integrate
physics modelling with NN [31] are inspiring for directions on how
to integrate mechanistic models with NN techniques for forecasting,
in particular pandemics where mechanistic models do exist. When
the mechanistic models are based on ODE (Ordinary Differential
Equations), somehow embedding this into the NN architecture ap-
pears necessary and recent techniques suggest that this may be
possible [32]. Pandemic modelling is difficult by itself, even though
that in most cases, the data is not reliable. Being able to incorpo-
rate domain expertise in some manner makes sense as a purely
data driven approach has its limits. Forecasting usually does not
afford a lot of training data and this handcuffs NN approaches. Per-
haps recasting the way NN are used, lets say as anomaly detec-
tors with respect to a mechanistic model may provide more training
data? Accepting the unknowns and unobserved and dealing with
the forecasting problem using a NN probabilistically is also worth of
exploration [33].

"Those who have knowledge, don’t predict. Those who predict,
don’t have knowledge " (Lao Tzu).
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