
InnovFaceNet: Deep Face Recognition for Industrial Environments
Nagarjun Gururaj InnovatorsBay Technologies Pvt. Ltd., India
Kanika Batra InnovatorsBay Technologies Pvt. Ltd., India
Email: {nagarjun.gururaj, kanika.batra}@innovatorsbay.com

Abstract

In recent times the usage of intelligent systems have paved way for
many applications to be robust and self-reliant. One such popular
and vast growing technology is face recognition. Facial Recognition
technology is used in security, surveillance, criminal justice systems
and many other multimedia platforms. This work proposes a real
time facial recognition technology which can be used in any indus-
trial setup eliminating manual supervision, ensuring authorized ac-
cess to the personnel in the plant. Due to the recent development of
COVID-19 pandemic around the world, wearing masks has become
a necessity. Our proposed facial recognition technology identifies a
person’s face with mask or no mask in real time with a speed of
20 FPS on a CPU and an F1-score of 95.07%. This makes our
algorithm fast, secure, robust and deployable on a simple personal
computer or any edge device at any industrial plant or organization.

1 Introduction

The usage of facial recognition has been very popular and widely
used in the computer vision community for identification and several
other applications. The first advent of facial recognition algorithms
saw a holistic approach to identify human faces. Most popular ones
being EigenFaces [1] which used the eigen vectors generated from
PCA on the face images to classify them. Other popular holistic ap-
proaches include similar techniques, by projecting high dimension
data into a lower subspace to identify a face. Later, face recog-
nition systems used a filter based approach in order to identify a
face. Most common approach is handcrafting features to identify
key attributes of faces followed by some processing and classifi-
cation techniques [2]. Most popular algorithms include Gabor fea-
ture extraction [3] and Local Binary Patterns for face recognition
[4]. In early 2010s, learning local based feature descriptors were
introduced which indicated a shallow learning of features for face
recognition, most popular works of shallow learning include [5], [6].
All the traditional face recognition algorithms suffered from identify-
ing faces with small deviations and fluctuations mainly due to the
mismatch of theoretical assumptions with practical scenarios. Tra-
ditional face recognition algorithms suffered due to its adaptability
to constraints like lighting, pose, non-frontal profile of faces in real
time. With advent of deep learning in 2012, the performance of face
recognition algorithms have been boosted considerably. The us-
age of deep networks in effective feature learning across the layers
contributed to a significant performance gain. In 2014, DeepFace
[7] achieved the SOTA accuracy on the famous LFW benchmark
[8], approaching human performance on the unconstrained condi-
tion for the first time (DeepFace: 97.35% vs. Human: 97.53%), by
training a 9-layer model on 4 million facial images [2]. Recent deep
learning networks like FaceNet [9] which use an existing face em-
bedding to identify the faces achieved an accuracy of 99.63% on
the LFW benchmark [7] with Siamesenet [10] which uses two deep
networks to produce a similarity score to identify the faces, serve
as motivation for our proposed algorithm. However, the trade-off
between performance and computational size in deep learning al-
gorithms still exists, training these algorithms incur cost and com-
putational resources.

To overcome training with huge resources, the proposed al-
gorithm uses three pre-trained deep networks [face-detection-
retail-0005 to detect faces and predict their bounding boxes;
landmarks-regression-retail-0009 to predict face keypoints; face-
reidentification-retail-0095 to recognize persons] provided by Intel
Openvino Platform. The paper is structured as follows: Section 2
provides an overview of the dataset used to test our proposed algo-
rithm; Section 3 discusses the proposed algorithm in brief; Section 4
discusses the working of real time face recognition engine as a sin-
gle module; Section 5 discusses the results obtained on our dataset
and Section 6 discusses the outcomes and possible extensions of
the algorithm.

2 Dataset

InnovFaces is a synthetic dataset conceived and prepared by In-
novatorsBay Technologies. It is generated by capturing faces from
raw videos of 29 personnel recorded on a 480p camera at a man-
ufacturing facility in India. To ensure facial recognition on masked
faces, we superimpose a mask on the extracted faces of the per-
sonnel. Later we combine these images with the extracted faces
without masks. Now, the face database contains extracted face im-
ages and the superimposed mask face images. Our original data
contains 29 recorded videos. The generated face database con-
sists of 3595 extracted face images with and without mask, each
image corresponding to a size of 112 × 112 × 3. Two sample im-
ages from InnovFaces is shown in Fig 1. Fig 1a shows the extracted
face without mask and Fig 1b shows the extracted face with super-
imposed mask. We test this algorithm on a real time stream from a
camera mounted at the entrance of the facility.

(a) Without mask (b) Superimposed mask

Fig. 1: Sample images from InnovFaces

3 Method

In order to design a robust real time algorithm in terms of perfor-
mance and speed we experimented various algorithms as proof of
concept for the proposed algorithm. First, we used a real time face
recognition with the Ultralight face detector [11] and MobileFaceNet
[12] which produced an above average performance in terms of ac-
curacy with low real time speed trained on two faces. To enhance
the accuracy an additional SVM layer with softmax was added. This
boosted the accuracy by a very small margin with low speed. To sat-
isfy the speed requirements of a real time processing system, an
approximation on the weights was applied using the floating point
precision upto 32 bits [FP32] using the Intel Openvino Platform.
This helped in accelerating inference on real time feed. We also
experimented the dataset containing two faces per participant with
the VGGFace [13] algorithm which performed poorly in real time
conditions in terms of performance and accuracy.

As a result of applying the above algorithms on dataset con-
taining two faces per participant, factors like lack of training data,
speed of the algorithm and performance accuracy was deeply af-
fected. To overcome this, we generated many copies of extracted
faces from each class in different pose, frontal modes and lighting
conditions. For this purpose, we used the Intel Openvino platform
which provided an approximated model for real time inference on a
CPU. We used a combined model of three variants, the first model
corresponds to a face detector which is shown in Fig 2. The face
detector model consists of the conventional MobilenetV2 [14] with
an SSD single head attached to it. The single SSD head from 1/16
scale feature map has nine clustered prior. The input to this network
is a sequence of frames from the camera which is reshaped to 300
× 300 × 3. The output of the MobilenetV2 is fed as an input to SSD
head which produces a vector of [1, 1, N, 7] where ’N’ is the number
of detections. For each detection, the description has the format:
[imageid, label, conf, xmin, ymin, xmax, ymax] where imageid is the
ID of the image in the batch; label is the predicted class ID; conf is
the confidence for the predicted class; (xmin, ymin) are coordinates



Fig. 2: Face Detector Model

of the top left bounding box corner; (xmax, ymax) are coordinates
of the bottom right bounding box corner. Next, we use a custom
built model illustrated in Fig. 3 for predicting landmarks of the de-
tected faces in the frames. It has a classic convolutional design:
stacked 3x3 convolutions, batch normalizations, PReLU activations,
and poolings. Final regression is done by the global depthwise pool-
ing head and FullyConnected layers. The model predicts five facial
landmarks: two eyes, nose, and two lip corners. Finally, we use

Fig. 3: Landmark Regressor Model

a deep learning model for face re-identification purpose. This is a
lightweight network based on MobileNetV2 backbone, which con-
sists of 3x3 inverted residual blocks with squeeze-excitation atten-
tion modules. Instead of the ReLU activations used in the original
MobileNetV2, this network uses PReLU ones. After the backbone,
the network applies global depthwise pooling and then uses 1x1
convolution to create the final embedding vector as shown in Fig.4.
The model produces feature vectors which should be close in co-
sine distance for similar faces and far for different faces. The model

Fig. 4: Face Re-identification Model

performs at LFW benchmark accuracy given that the faces are most
aligned in the frontal position. To do this, we use regressed points
and the given reference landmarks to build an affine transformation
to transform regressed points to the reference ones and apply this
transformation to the input face image. The input to this model is an
image of size [1 × 3 × 128 × 128] and output is a row embedding
vector of shape [1, 256, 1, 1], containing a row-vector of 256 floating
point values. Outputs on different images are comparable in cosine
distance [15].

4 Putting It All Together

In Section 3, deep networks used to build the face recognition model
are discussed. Here, we combine these models to form a single
face recognition engine. These models are combined and simu-
lated as a single engine using the Intel Openvino Platform [15]. The
face recognition engine illustrated in Fig. 5 reads the specified input
video stream frame-by-frame, be it a camera device or a video file,
and performs independent analysis of each frame. In order to make
predictions, the application deploys the three models on the speci-
fied devices, in our case is a CPU using OpenVINO library and runs
them in asynchronous manner [16]. An input frame is processed
by the face detection model to predict face bounding boxes. Then,

Fig. 5: Comprised Face Recognition Model

face keypoints are predicted by the corresponding model. The final
step in frame processing is done by the face re-identification model,
which uses keypoints found to align the faces and the face database
to match faces using cosine distance found on a video frame with
the ones in the dataset given in equation 1;

CS =
Idata · Itest

‖Idata‖×‖Itest‖
(1)

where ’CS’ represents the cosine similarity distance, ’Idata’ is the em-
bedding vector generated from the dataset, ’Itest ’ is the embedding
vector generated from the test input frames.

5 Results

This section discusses the results obtained by deploying our face
algorithm at the manufacturing facility. Before we present the re-
sults, there is a huge challenge of assembling a single or multiple
personnel at once. In order to test in real-time, we simulated a test-
ing environment at the entrance by assembling all 29 personnel of
InnovFaces dataset to walk towards the camera with face masks
and without it. An illustration of real time testing results are shown
in the Fig. 6 below. We also tested our face recognition on a com-

(a) Authorized face identifi-
cation

(b) Unauthorized face iden-
tification

Fig. 6: Sample Realtime Results

pletely occluded face and the algorithm fails to detect the face in
such scenarios. The primary reason behind this is the missing fea-
tures which are to be learned by the face detector model for detect-
ing faces in such scenarios. The demonstration of such a scenario
is presented in Fig. 7 below. The performance of the algorithm is

Fig. 7: Real time results for a completely occluded face

measured using F1-Score metric for each personnel’s face identity.
The general formula for F1-score is given by equation 2 below.

F1 = 2 · Precision ·Recall
Precision+Recall

(2)

Precision corresponds to the total rate of true positives which are
identified correctly out of all instances and Recall corresponds to
number of true positives which are identified correctly. Precision
and Recall are calculated using equation 3 and equation 4.

Precision =
T P

T P+FP
(3)



Recall =
T P

T P+FN
(4)

For testing our algorithm, we encode the classes as true class which
is the employee ID and false class being "unknown" for unautho-
rized persons. We also tested the algorithm for its performance
with respect to speed. All the inference optimizations have been
done using the Intel Openvino Platform by applying a FP32 approx-
imation on the models.

The results are first generated on a dataset containing two faces
per participant using the face recognition ultralight model [11], face
recognition ultralight model with support vector machine (SVM) and
VGGFace model [13]. We also optimized these models for inference
speed up in real time. Face Recognition Ultralight Model with SVM
utility is ranked second best with F1-Score of 77.59% for two faces.
We also test the speed of the algorithms and achieve only 7 FPS at
best for these models. We also try to optimize the models in terms
of speed by converting them to inference-efficient models using In-
tel Openvino Toolkit [16] and the speed is boosted by 3 FPS for
ultralight model with SVM utility and VGGFace respectively. These
models provide a baseline for our algorithm in terms of both speed
as well as accuracy, hence we design the proposed algorithm and
test it on 29 employees of the organization. The results for the pro-
posed model and the baseline models is depicted in the Table 1
below with our proposed model ranked best, both in terms of speed
of 20 FPS and average F1-score of 95.04%.

Algorithm

Speed
(in FPS)
[without

OpenVino]

Speed
(in FPS)

[with
OpenVino]

F1-score
(in %)

Face Recognition
Ultralight 7 10 76.17

Face Recognition
Ultralight +

SVM
7 10 77.59

VGGFace 2 5 70.50
InnovFaceNet

(Ours) 12 20 95.04

Table 1: Performance of proposed algorithm and baseline mod-
els: InnovFaceNet (best), Face Recognition Ultralight+SVM (sec-
ond best)

The average F1-score of our proposed algorithm for 29 employ-
ees is calculated by taking a simple average of individual F1-scores
calculated for each employee in real time. The individual F1-scores
for each employee is depicted in Fig. 8. As we see, the perfor-

� � � � � � 	 
 � � �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��


��������������

�

��

��

	�

��

���

��
��
��
��
�

�������������
��������������

Fig. 8: Individual F1-scores of employees tested real time

mance of our proposed model is more than 95% for most of the
employees and 100% for some employees. During the testing, the
employees were wearing face masks for some duration and did not
wear them for certain duration. We calculate the performance for
these combined scenarios. However, the performance of recogniz-
ing few employees are low. Employee number 18 has an F1-score
of approximately 67% and Employee number 19 has an F1-score of
around 50%. The primary reason is the prior insufficient face data

for these employees. Due to this, the algorithm does not general-
ize with the constraints like pose, lighting and frontal profile during
test time. The amount of sufficient data plays an important role in
generalizing faces in such unconstrained scenarios.

6 Conclusion and Future Work

From Section 5, the primary consideration for our proposed algo-
rithm is the importance of sufficient data to match with the detected
faces in real time for all unconstrained scenarios. However, our
proposed algorithm which uses a combination of three deep neu-
ral networks as discussed in Section 3 perform very well with high
accuracy in real time. The placement of the camera plays a vital
role in enhancing the performance of the algorithm. More the cam-
era angle is mounted or aligned horizontally to face, the results are
more accurate as the algorithm is able perform face detection, align
face using keypoints and identify the face more efficiently. Another
important factor is the distance of the camera from the face, so that
it captures the entire face. The reason for this is if there are distant
faces from the camera, the face detection algorithm fails to capture
the face due to the small area of the face region, hence it is recom-
mended to place the camera at optimum distance. Another key as-
pect is the quality of the camera which means the camera should be
of good resolution, if not the face images are blurry and the network
produces erroneous results. Our proposed algorithm can be used
at any organization or industry for applications like bio-metric iden-
tification, security or surveillance. As the world goes through the
pandemic the usage of face masks is inevitable. Our algorithm per-
forms exceedingly well for recognizing faces with face masks. The
reason for this is solely due to the amount of synthetic reference
data generated by us which captures face images wearing masks
in unconstrained conditions. Our algorithm is also deployable at a
remote station, organization or a huge industry with just a help of
a desktop or a CPU instance which saves time for installation and
deployment cost by a huge margin.

Inspite having a very good face recognition algorithm for indus-
trial environments, from a practical point of view one can improve
the algorithm and the real time streaming. From an algorithmic view,
face mask recognition is not solely dependent on data as discussed
before and hence one can extend this algorithm to study the ex-
plainable attributes contributing to face mask recognition. In real
time, the scaling of InnovFaces dataset plays a key role. As the
amount of data increases, the data streaming becomes a bottle-
neck and introduces a delay in real time. To overcome this, one can
experiment with big data engineering platforms like Apache Spark.
One can extend this algorithm by generating synthetic data using
GANs or other image processing techniques which will boost the
accuracy of the algorithm. An effective communication and support
from the industry personnel is key to deploy the solution. An inter-
esting prospect would be to deploy these algorithms on edge de-
vices using GPU platforms where one can use the TensorRT library
to perform the GPU approximations on the deep learning model to
boost the speed of the algorithm.

Acknowledgments

This work would not have been possible without the support of all
employees of the manufacturing facility. We would like to particularly
thank the 29 employees of the InnovFaces dataset for volunteering
and spending time for data recording and their valuable support.

References

[1] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal
of cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[2] W. Mei and W. Deng, “Deep face recognition: A survey,” arXiv
preprint arXiv:1804.06655, vol. 1, 2018.

[3] R. Mehrotra, K. R. Namuduri, and N. Ranganathan, “Ga-
bor filter-based edge detection,” Pattern recognition, vol. 25,
no. 12, pp. 1479–1494, 1992.

[4] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
IEEE transactions on pattern analysis and machine intelli-
gence, vol. 28, no. 12, pp. 2037–2041, 2006.



[5] Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face recognition with
learning-based descriptor,” in 2010 IEEE Computer society
conference on computer vision and pattern recognition. IEEE,
2010, pp. 2707–2714.

[6] Z. Lei and S. Z. Li, “Learning discriminant face descriptor for
face recognition,” in Asian Conference on Computer Vision.
Springer, 2012, pp. 748–759.

[7] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recog-
nition,” 2015.

[8] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and
E. Brossard, “The megaface benchmark: 1 million faces for
recognition at scale,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 4873–
4882.

[9] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 815–823.

[10] Y. Guo and L. Zhang, “One-shot face recognition by promoting
underrepresented classes,” arXiv preprint arXiv:1707.05574,
2017.

[11] linzai, “Face Detector Ultralight,” https://github.com/Linzaer/
Ultra-Light-Fast-Generic-Face-Detector-1MB, 2019, [Online;
accessed 20-July-2020].

[12] S. Chen, Y. Liu, X. Gao, and Z. Han, “Mobilefacenets: Efficient
cnns for accurate real-time face verification on mobile devices,”
in Chinese Conference on Biometric Recognition. Springer,
2018, pp. 428–438.

[13] Z. Qawaqneh, A. A. Mallouh, and B. D. Barkana, “Deep convo-
lutional neural network for age estimation based on vgg-face
model,” arXiv preprint arXiv:1709.01664, 2017.

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[15] Intel, “Face Reidentification Model,” https://docs.
openvinotoolkit.org/2019_R1/_face_reidentification_retail_
0095_description_face_reidentification_retail_0095.html,
2019, [Online; accessed 20-June-2020].

[16] Intel, “Face Recognition Model,” https://docs.openvinotoolkit.
org/2020.3/_demos_python_demos_face_recognition_demo_
README.html#see_also, 2019, [Online; accessed 20-June-
2020].

https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://docs.openvinotoolkit.org/2019_R1/_face_reidentification_retail_0095_description_face_reidentification_retail_0095.html
https://docs.openvinotoolkit.org/2019_R1/_face_reidentification_retail_0095_description_face_reidentification_retail_0095.html
https://docs.openvinotoolkit.org/2019_R1/_face_reidentification_retail_0095_description_face_reidentification_retail_0095.html
https://docs.openvinotoolkit.org/2020.3/_demos_python_demos_face_recognition_demo_README.html#see_also
https://docs.openvinotoolkit.org/2020.3/_demos_python_demos_face_recognition_demo_README.html#see_also
https://docs.openvinotoolkit.org/2020.3/_demos_python_demos_face_recognition_demo_README.html#see_also

	Introduction
	Dataset
	Method
	Putting It All Together
	Results
	Conclusion and Future Work

