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Abstract

The recognition of microplastics (MPs) in environmental samples
via Fourier transform infrared spectroscopy (FT-IR) is challenging
due to a plethora of factors such as the presence of plasticizers,
weathering, and contamination that can lead to significant variances
in measured spectra for a given type of plastic. Conventional library
search approaches proposed in literature rely on comparing the ob-
served spectrum with spectra in reference libraries, and thus signifi-
cant spectra variances can lead to recognition errors when leverag-
ing such approaches. Motivated to tackle this challenge, this study
explores the feasibility of leveraging deep learning for automatic MP
recognition via FT-IR spectroscopy. More specifically, a deep convo-
lution neural network (CNN) architecture, referred to here as Plas-
ticNet, is introduced for the purpose of automatic MP recognition.
PlasticNet was trained on a large corpus of FT-IR spectra of differ-
ent plastic types in order to learn discriminative spectral features
characterizing each plastic type. Experimental results showed that
PlasticNet was capable of recognizing between polypropylene (PP)
and polyethelene (PE) particles from a sample in an effective and
efficient manner, with PlasticNet correctly identifying PP particles
that were not recognized via a library search technique and at a
faster recognition speed as well.

1 Introduction

The ubiquitous presence of microplastics (MPs) and their potential
threats to aquatic and human health have become a growing public
concern [1] (Ziccardi et al., 2016). Common methods for MP analy-
sis include visual sorting and single-point Fourier transform infrared
spectroscopy (FT-IR) analysis. Visual sorting with the naked eye
or dissecting microscopy is easy in operation but requires signifi-
cant human labor and has been shown to have up to 70% error.
Single-point FT-IR which analyzes MPs one by one is time consum-
ing especially when there are a large number of MPs in the sam-
ple. The use of focal plane array based (FPA-based) micro-Fourier
transform infrared spectroscopy (micro-FT-IR) is a promising tech-
nology for rapid and accurate identification of MPs in environmental
samples because it simultaneously collects multiple spectra of MPs
on a surface. The output of an FPA-based micro-FT-IR measure-
ment is a 3-D matrix, with each pixel represented by x-y coordinates
and the associated FT-IR spectrum. A key question in data analysis
is the composition of each pixel and by extension the MP particle.

The conventional approach for MP recognition is known as a li-
brary search strategy, where the correlation coefficient between an
unknown spectrum and one or few standard spectra in a reference
library is calculated to determine which plastic type has the closest
matching reference spectrum to the unknown spectrum. However,
weathering, heterogeneity of particles, and attachment of biofilms
can significantly modify spectra of plastics [2] (Primpke et al., 2017)
and thus lead to significant spectra variances for a given plastic
type. As such, leveraging standard library search strategies can re-
sult in recognition errors due to low correlation between a given ref-
erence spectra and an unknown spectra under the aforementioned
conditions. Therefore, the result in leveraging such library search
methods in real-world scenarios could be the missed identification
of MP particles.

Given the recent advances in the field of deep learning, there is
a growing interest in leveraging deep convolution neural networks
(CNN) for the purpose of automatic MP recognition. Rather than
comparing with a limited set of reference spectra as with library
search methods, CNNs are capable of directly learning discrimi-
native spectral features characterizing each plastic type in a way
that accounts for inherent spectral variances. For example, Ng et
al., (2020) [3] recently leveraged a CNN for MP recognition on the
basis of hyperspectral data. However, to the best of the authors’
knowledge, the use of CNNs for automatic MP recognition via FT-IR
spectroscopy has not been previously explored.

Motivated by the aforementioned potential, this study explores

the feasibility of leveraging deep learning for automatic MP recogni-
tion via FT-IR spectroscopy. This is accomplished through the intro-
duction of PlasticNet, a CNN architecture designed specifically for
the purpose of automatic MP recognition based on FT-IR spectra.
The methodology behind this study along with the corresponding
experimental results will be discussed in the following sections.

2 Methodology

To expore the feasibility of leveraging deep learning for automatic
MP recognition via FT-IR spectroscopy, we construct a tailored CNN
architecture called PlasticNet. The PlasticNet network architecture
is based on a VGG deep convolutional neural network architecture
[4] (Simonyan & Zisserman, 2014), and comprises of 8 convolu-
tion layers, 3 max pooling layers, 3 fully connected layers, and 1
softmax layer that outputs the likelihood of an input FT-IR spectrum
belonging to each plastic type under consideration. Each 1-D FT-
IR spectrum is transformed to a 2-D spectrogram representation by
sliding a Hamming window across the 1D spectrum and producing
a 2-D stack of overlapping spectral segments. A Fourier transform
is then applied to the spectral segment stack to obtain the final 2-
D spectrogram. By transforming the input FT-IR spectra into a 2-D
spectrogram representation, one can better structure the spectral
relationships between adjacent spectral frequencies in a way that
facilitates for improved spectral feature learning by a CNN architec-
ture such as PlasticNet.

Training PlasticNet requires a large number of spectra (a mini-
mum of 200 for each type for optimal results) of each type of plastic
type. The dataset used in this study for training and testing Plastic-
Net was obtained from [5] (Primpke et al., 2018). The samples from
the dataset had been collected at a wastewater treatment plant,
and was imaged by a Bruker Hyperion 3000 FPA-based FT-IR mi-
croscope after cleaning with enzymatic digestion. The extraction
of data was performed using Bruker OPUS c⃝7.5. A total of 415,
256, and 921 spectra were obtained from the PP and PE MPs and
the background respectively for training and testing PlasticNet. For
each type of plastic, 50% of the samples were used for training Plas-
ticNet and the other 50% were used for testing PlasticNet. The pro-
posed PlasticNet was constructed, trained, and tested in Mathwork
Matlab c⃝R2018a. The flow chart of methodology is summarized in
Fig.1.

Fig. 1: Flow diagram of methodology.

3 Results and discussion

The goal of this study was to critically assess the potential of
deep learning for improved MP recognition via FT-IR spectroscopy
when compared with library search techniques. The library search
method that was used in this study for comparison was that de-
scribed by [6] (Primpke et al., 2020). The following sections dis-
cuss the assessment of the accuracy of recognition by PlasticNet,
present a further validation of the efficacy of PlasticNet by manu-
ally re-analyzing the spectra of recognized particles, and compare



Fig. 2: Visualization of dataset used for training/testing the proposed PlasticNet. Particles 1 and 2 provided spectra for PP (yellow) and
PE (red). Image (A) shows all particles recognized by the library search method while Image (B) shows particles recognized by PlasticNet
after training. Particle 3 is an example of a PP MP that was recognized by PlasticNet but not by library search.

Fig. 3: Normalized Confusion Matrix.

the recognition speed achieved by PlasticNet when compared to a
library search method. The latter was deemed important as exces-
sive sample processing times will diminish the attractiveness of a
method in practice.

As shown in Fig. 2A, several large PE (labelled as red) and
PP (labelled as dark yellow) MPs were present in the dataset. The
large particles allowed for the extraction of hundreds of spectra and
hence all of the PP and PE spectra were extracted from particle
1 and particle 2 respectively. The spectrum at the particle edges
were weaker and noisier compared with those in the center of the
particles, so special attention was paid to extract spectra on the
edge of the particles while making sure essential bands existed.

The automatic MP recognition performance of PlasticNet was
visualized using a normalized confusion matrix and is shown in
Fig.3. The diagonal elements of the confusion matrix represent the
percentage of spectra for which the prediction was correct, while
off-diagonal elements represent the percentage of spectra that were

mispredicted by PlasticNet. As shown in Fig.3, the true positive per-
centage of PP, background, and PE were 1, 0.99, and 0.99 respec-
tively, demonstrating a high recognition accuracy of the proposed
PlasticNet.

To further explore the efficiacy of the proposed PlasticNet to rec-
ognize MPs, the recognition performance of PlasticNet was com-
pared with that of a library search method. This involved exam-
ining MPs that were outside of the training sets, and focused on
MPs that were recognized by PlasticNet but were not reported by
the library search. Manual reanalysis, which examined the pres-
ence and absence of essential or additional bands of MPs, was
performed for validation. As shown in Fig.4, particle 3 from Fig.2B,
that appeared in PlasticNet’s prediction and was not conclusively
recognized by the library search method, is presented as an ex-
ample of how the manual reanalysis was performed. As shown in
Fig. 4C, all of the essential peaks of PP existed in the particle 3
spectra, demonstrating that it was composed of PP. A similar re-
analysis was performed for 22 PP particles that were recognized by
PlasticNet and missed by the library search method, and the essen-
tial PP peaks were found in all of them. Manual reanalysis was not
done on the “additional” PE particles because the spectra of PE and
acrylates are similar. This issue may be resolved when more acry-
lates spectra are added to PlasticNet training process. Overall, the
analysis revealed that the proposed PlasticNet has the capability to
automatically recognize MPs that cannot be recognized via library
search.

Recognition speed is an important aspect of data analysis as
the dataset derived from FPA FT-IR analysis of a environmental
sample usually contains approximately one million spectra. The
data analysis was performed on a desktop with an Intel E5 2687W
processor, 64GB DDR3 memory, NVIDA GeForce RTX 2060 Super
graphic card. Approximately 114 min was required for the library
search to process the dataset while it took only 62 min for PlasticNet
to process the same dataset. Hence, the proposed PlasticNet was
46% faster than the library search while producing higher quality
identifications. This substantial reduction in time for analysis would
reduce the resources required for intensive MP research.



Fig. 4: Manual reanalysis of particle 3 that was recognized by PlasticNet but not by the library search method. (A) Particle images
established by integrating alkane peaks. (B) Location of spectra selected for reanalysis. Dark green and orange circles were on particle
3, while the black and light green circles were on a PP particle that was recognized by both PlasticNet and library search. (C) Spectra
indicating essential PP peaks existed in particle 3.

4 Conclusion

This study explored the feasibility of leveraging deep learning for
automatic MP recognition via FT-IR spectroscopy. This was facili-
tated by the introduction of PlasticNet, a deep convolutional neural
network architecture tailored for MP recognition. Experimental re-
sults using plastic samples showed that the proposed PlasticNet
can achieve not only improved MP recognition performance when
compard to library search methods, but also perform MP recogni-
tion at a significant faster speed. Future work involves increasing
the FT-IR spectra corpus in terms of both quantity of samples per
plastic type but also the variety of plastic types, and exploring the
performance of PlasticNet when trained on this expanded wealth of
spectral data.
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