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Abstract

This study introduces methods of evaluating 3D perception sys-
tems, such as Time of Flight (ToF) systems, for automated logis-
tics applications in uncontrolled environments. Here perception is
defined as a system’s understanding of its environment and the Ob-
jects Of Interest (OOI) within that environment, through hardware
consisting of cameras or depth sensors. Current computer guided
machinery that rely on perception systems, such as certain Au-
tonomous Guided Vehicle (AGV), require controlled environments
that are specifically designed for such a machine. Uncontrolled en-
vironments include warehouses or manufacturing facilities that have
not been tailor designed or structured specifically for the purpose of
using a computer guided machine. In this study, two methods are
proposed to assess 3D systems proposed for autonomous logistics
in uncontrolled environments. The results of this study indicate that
the methods presented here are suitable for future and comparative
3D perception and evaluation in this space.

1 Introduction

In recent years, the focus on manufacturing and logistics has been
the automation of the machinery responsible for the transportation
and handling of materials. In autonomous logistics and material
handling, there has been a continual improvement of item tracking
and computer based logistics [1]. However, this has resulted in the
physical machinery and their operation becoming a bottleneck in au-
tonomous systems. The benefits of automating the various material
handling machines in these industries are numerous and thoroughly
explored, such as improved speed and efficiency of logistics [2],
however the requirements for automation in this space are signifi-
cant. Current State Of the Art (SOA) technology, machines such as
forklifts and robotic arms, can be modified to run autonomously out-
side of structured environments using perception system, but only
if key requirements are met. These requirements include the use
of “standard loads” consisting OOl that are simple and consistent
shapes, such as uniform boxes on pallets. In addition to this, the
machines typically operate in isolated areas of warehouses and fac-
tories known as restricted zones to prevent both human error from
affecting the automated systems and to prevent any injuries from
these machines not detecting personnel along the machine path.
In this study, a 3D capture system known as a Time of Flight (ToF)
camera is examined in the setting of automated logistics. This spe-
cific type of 3D capture hardware operates like a conventional cam-
era, using natural light reflected back to a visual sensor that records
an RGB colour map known as classical 2D images. For this system
however, instead of using natural light the ToF camera projects its
own unstructured InfraRed (IR) light source at high speeds inter-
vals, this is used to measure the delay between the source light and
the light being reflected in the scene before returning to the visual
sensor [3]. This delay determines an object in the scenes distance
from the camera, hence the name “Time of Flight”. In this study
a ToF Basler Blaze intended for autonomous load assessment is
utilised, this system presents the recording of high density depth
pixels with each capture at high speeds. In comparison to other
3D technologies, such as a Zivid One Structured Light (SL) system,
this 3D camera captures footage at a lower dimensional tolerance
but a much higher speed (Table 1). In this case, a higher capture
speed is more desirable than dimensional accuracy to allow for real
time autonomous operations, comparative to a manual machine op-
erator [4]. In the context of this study, noise is presented as white
noise or false positives in captured scenes. This may be caused
by dust or air particulates as a result of manufacturing processes,
such as the use of abrasives, or false positives caused by artifacts
of scene illumination as explained further in the methodology.

Table 1: 3D system comparison.

Spatial Reso- | Temporal Min acqui-
3D system lution noise sition time
640x480
ToF (Basler) points 2mm 33 ms
- 1860x1180
SL (Zivid) points 0.3mm 80 ms

Note: all values presented represent worst case scenarios, i.e.
maximum usable distance under worst conditions.

The aim of the work is to establish methods of evaluating 3D
systems, particularly the level of white noise present in areas
critical to 3D processes, such as edge detection, and the presence
of surface distortions, such as depth variations in flat surface or
puckering. These are qualities that are vital to the evolution of 3D
perception and in this study, methods are presented in both cases
for evaluating the presence of these distortions and the degree
to which they affect the data. The methods presented here are
exclusively tested on one device, a ToF system as described. This
is due to limitation with time and equipment available at the time of
this study, however the aim of this research is to propose methods
of evaluation that are reproducible and can be carried out with
various systems in the future.

2 Controlled Environments

Fig. 1: Office environment QUB

A Controlled environment is an environment where several fac-
tors relevant to image processing techniques, classical monocular
and/or 3D perceptive methods, are controllable such as lighting,
air quality and background objects. This can be as detailed as
an environment structured specifically for a given process, such as
autonomous bin picking, or as general as a lab setting with con-
sistent lighting. The latter is the case for this study as shown in
Fig. 1, where aspects of the environment are consistent allowing for
a system to be easily tuned relative to a scenes lighting and objects
present in both the foreground and background.

3 Uncontrolled Environments

In contrast to a controlled environment, an un-controlled environ-
ment naturally is an environment where variables such as lighting
, air pollutants and objects in the scene are neither controllable or
consistent. This presents a greater challenge for image process-
ing operations as a perceptive system cannot be finely tuned. For
this study a small storage warehouse servicing a forklift factory was



Fig. 2: Warehouse uncontrolled environment

used for capturing data Fig. 2. In this warehouse there was natural
lighting provided from sky lights, in addition to this the storage room
was located near welding bays which resulted in dense particles cir-
culating in the air as well as numerous unorganised objects present
in the background of scenes. This is the primary data set that is
used for evaluating the noise the sensor presented in this paper.

4 Methodology

Two main data sets are presented for this study, footage captured
in controlled environment represented by the office environment
as seen in Fig. 1 and an uncontrolled environment represented by
footage captured in an uncontrolled warehouse environment Fig. 2.
From each data set, two aspects of the objects present in the scene
will be evaluated; the noise present along an objects edge, in par-
ticular with gray scale depth images captured in the uncontrolled
environment, and surface distortions observed in point cloud data,
examined through flat surface both in controlled and uncontrolled
environments. To examine these aspects of the data, two methods
are presented below.

4.1 Extraction by Threshold

Gray scale thresholds are a common tool used in classical image
processing of 2D images. As presented in early literature, thresh-
olds are typically used for segmentation in 2D gray scale images as
described by Cheriet et al [5]. The process operates by determin-
ing an images background and foreground objects based on their
colour, or gray scale value between 0 & 255 (256 bit resolution).
This can be as simple as applying a simple cut-off value, where
the gray scale values beyond a stated value are ignored ,i.e. pixels
with a value higher than 125. More complicated methods exist such
as Otsu threshold criteria, however these are adaptive thresholds
that are not applicable in this study. Consider the image below of a
standard rectangular load captured through 2D IR data returned, a
typical 2D image obtained through IR light instead of natural light.

Fig. 3: Gray scale image of OOl

Observing Fig. 3 it is reasonably easy to distinguish the back-
ground in the image, as it is much darker than the pallet load and
the racking. However, the gray scale difference between racking
present in the foreground and background is a harder distinction to
be made. Depending on the purpose of applying a threshold filter
to an image, the tuning of the threshold might need to be broad and
adaptive, as discussed with Otsu tuning, which accounts for a scene

where the objects present or the lighting of the scene will vary. In
this case, the threshold is manually tuned to extract only the OO,
the pallet load, as small data set is being observed. Applying this
simple binary threshold yields the following result Fig. 3.

Fig. 4: Threshold image of OOl

The result of this threshold operation yields a binary image of
only the OOI, however there are other artifacts present in the image
from the objects racking some background surfaces. This results in
a base image that is not ideal, however the purpose of this image
is to complete a comparison of data present in the gray scale depth
map which allows for minor defects to be present. This is expanded
upon later in the chapter.
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Fig. 5: Threshold image of OOl

In addition to the 2D IR image obtained, a gray scale depth map
was also captured. This is generated by measuring the time delay
between a pulse of IR light and the light returning to the 3D camera,
as discussed in the introduction. This is represented as a gray scale
image, where each pixel value between 0 and 255 represents a de-
tected points distance from the 3D camera and not its colour. As a
result, a similar threshold technique can be applied to depth images
to extract data that is a specific distance from the camera. This is
seen in Fig. 5, where OOI has been extracted from the background
and isolated. As a result the OOl is obtained two ways, an IR thresh-
old that extracts only the OOI with minimal noise and the Depth map
threshold that presents the OOl and only the relevant noise along
the edge. To examine the degree of noise present in the depth map,
a direct comparison can take place by performing a bitwise subtrac-
tion of the base image, IR threshold, and the depth map leaving
only the noise. This operation is completed by only removing pixels
that are present in both image, where noise is only present in the
depth map, and defects in the IR threshold are ignored as this is
the base image. Only pixels in the depth map are carried through
after a bitwise subtraction unless they are also present in the base
IR image. This is the method proposed for detecting noise edge for
OOl presented in uncontrollable scenes.

4.2 Plane normal vectors

Surface properties, specifically surface normal’s, are a key property
of point clouds that are used for OOl separation in complex sci-
ences, as presented in Tsai et al [6]. There are varies methods
and algorithms that are used to determine plane normal vectors
from a point cloud surface, in this study the "Open3D" libraries were
used. This algorithm considers a close neighbourhood of points,
points within a stated radius, and results in a set of normal vectors
that are calculated incrementally along a surface and represent the
direction the surface is facing at each point, Fig. 6.

For an ideal flat surface, the normal vector is represented as
[0,0,-1]. This indicates a vector that is pointing directly at origin, i.e.



Fig. 6: point normal vector map

the 3D camera. Points that indicated a puckered or warped surface
would present a small deviation from this value, e.g. [0.210,-0.017,-
0.978]. By calculating the distance between the end point the ideal
normal vector and the actual normal vector Eq 1, a metric can be
derived to determine the degree of which the surface is warped.

\/(xz*x1)2+(Y2*Y1)2+(22*21)2 M

By comparing this distance for all points in a given area along a
surface, a standard distribution can be developed that presents the
mean normal distance/surface error that exists for a given surface
and the standard distribution of normal vector distance/surface error
Fig. 7.

Fig. 7: Distribution of normal vector error

5 Results

5.1 Edge Distortions

As discussed in the method section, noise along the edge of OOI’s
Fig. 9 can be quantified by comparing the gray-scale depth data with
that of an tuned threshold system for extracting the OOI and creat-
ing a mask to perform a bit-wise subtraction. As the ToF system
can capture both a gray-scale depth Fig. 8.1 and intensity image
Fig. 8.2 simultaneously, this allows for a comparison between clas-
sical methods and depth data to take place. Through using classi-
cal methods, the OOl is extracted by using an optimised gray-scale
threshold to isolate the load, pallet and rack based on its gray value
Fig. 8.4. By preforming the same type of threshold, the gray-scale
depth image can be altered to contain only the OOls and the noise
present. Performing a simple subtraction process by subtracting the
white pixels from the binary images of both the depth map and the
2d gray-scale image (BITWISE NOT) leaves only the noise present
Fig. 8.3.

However, due to the difference between the depth and intensity
image other undesirable objects remain in the frame. To remove
these a simple bounding rectangle was drawn around the largest
cluster of White pixels in the mask image Fig. 3.4 and used to
crop the result Fig. 3.3, which creates an image consisting solely
of the noise pixels which can be quantified by counting the number
of white pixels present Fig. 4.

However, this value by itself means nothing as the total num-
ber of pixels can vary between scenes in addition to objects being
closer or further away. As a result, we can determine a value of
noise proportional to the OOl in the scene by quantifying it as a
ratio of total pixels in the cropped image (157,108 pixels) and the

Fig. 9: Isolated noise in depth data

noise present (8566 pixels). This give a noise ratio of 5.45%. Natu-
rally this value does not determine the difficultly in segmenting and
analysing the OO, but it can be used as metric to compare the level
of noise present across different data sets. If the same process is
completed for the isometric point cloud data, the level of noise found
can be used to determine if a reduction in noise can be achieved by
simply altering the position of the capturing system. Completing the
same process as before the OOI is isolated and a mask is used
to subtract items from the scene so that only the noise is present
Fig. 10.3.

As a result of the data being captured in an isometric perspec-
tive, only 3 of the 4 edges can be examined as the noise from the left
edge will blend with the left surface that is visible. This can be seen
in Fig. 11 below which had a noise ratio of 5.07% (5301/104520 pix-
els). Clearly visible in Fig. 11, there is less noise in the image most
notably on the edges of the OOI and the racking beam holding the
pallet. However, the noise is only reduced by 7% (5.07/5.45 * 100).

This may be attributed to an increase in noise in the inner sec-
tion of the pallet, or simply that re-positioning the depth camera has
only a minor effect on noise. In any case, a reduction in noise can
be seen showing some benefit to an indirect positioning of the 3D
sensor however limited that reduction may be.

5.2 Surface Distortions

The last method for assessing the sensor presented in this study
is to determine the effect of surface defects. When determining
surfaces to complete scene segmentation, smooth and consistent
point clouds that represent these surfaces are essential. Variance
in the depth values of points recorded can be expected, however
this variance should be below an acceptable threshold to not af-
fect algorithms that depend on surface properties of point clouds or
meshes. To measure the effect of surface distortions, scans were
taken of two scenes perpendicular to the OOI’s and of flat surfaces
to allow for easy assessment of surface distortions. The first scan



Fig. 10: Isometric data set

Fig. 11: Noise of isometric data set

was taken of the same un-structured scene presented in Fig. 12,
taken in a relatively open space with natural lighting through sky
lights. At the time of capturing these data set, the natural lighting
was brighter than normal (brighter than 90,000 lux) in comparison
to the recommended warehouse illumination from overhead lights
(10,000 — 20,000), producing a challenge for the system to Sup-
press Background lllumination (SBI), this however results in a nois-
ier surface, as can be seen bellow. As seen in the point cloud,
the flat surface of the cardboard box is heavily dimpled and there
is severe noise long the edge of the load. This noise presents
several challenges for processing the load and environment such
as edge finding for object template matching and determination of
clearances. For comparison a similar capture was taken in an office
setting using only indoor lighting at a slightly further distance. If we
crop a section of this point cloud to include only the flat surface of
the cardboard box, the surface defects can be easily seen.

Fig. 12: Cropped point cloud of flat surface (un-structured environ-
ment)

Using this cropped section, the normal vector for a given radius
of points, in this case a radius of 10 points and a maximum nearest
neighbor cluster of 30, can be calculated for each point. This vec-
tor gives an indication to where the surface is facing in 3D space
relative to the capture source of the point cloud. For the OOI cap-
tured, we know the front surface of the OQOI is perpendicular to the
sensor and so the normal vector value for a flat surface is [0,0,-1].
With this value known, the distance of the returned normal vector

for each point and the ideal point, of [0,0,-1], can be measured and
collated as a metric to determine useful statistics of the surface cap-
tured, such as the mean distance from the target and the standard
deviation. Comparing the surface captured in the un-structured en-
vironment to the structured office environment, the same type of flat
surface perpendicular to the camera can be observed in the draw-
ers under the desk. This OOl is at a comparable distance to the
previous OOl and has a large flat surface. Less noise is seen in
this seen around the edges of the OOI however, dimpling can still
be seen along the flat surface.

Performing the same steps on this data set, the normal of the
surface can be measured for a flat section of the lower drawer and
the variance in this value can be calculated. Comparing the mean
error, the distance in 3D space between the ideal end point of the
normal vector and the actual end point, a clear improvement in the
captured surfaces compared to the unstructured environment.

Table 2: Recorded surface error.

Scene Mean Error Standard Deviation
Warehouse 0.124 0.0058
Office 0.109 0.0048

6 Conclusion

In this study two aspects of 3D data was investigated, noise along
the edge of OOls and surface distortions, particularly puckering of
flat surfaces. To measure edge noise, colour based gray scale
images were captured simultaneously with depth maps and were
compared using classical image processing methods. By applying
a threshold to each data type to extract only the OOl and perform-
ing a bitwise subtraction of the two results, the noise present along
the OOQIs edge in the depth map could be isolated. It was found
that capturing OOl in an isometric angle opposed to perpendicular
to the surface results in a small noise reduction of 7%. Although
this result shows a clear improvement, other methods of improving
the capture of OOI edges, such as optimizing the capture settings if
a consistent environment is used. However, this does confirm that
this is a viable method for assessing both the quality of captured
data and sensor that is used for capturing scenes in this applica-
tion.

Surface distortions were evaluated by calculating the surface nor-
mal vectors of a large flat surface of an OOl and comparing this to
the ideal normal vector (0, 0, 1) to determine the statistical error,
the mean and standard deviation from the ideal normal vector. The
surface normal is outline in this report as one of the key methods for
determine the surfaces that comprise faces of an OOl and a con-
sistent value results in faster plane detection. By completing this
analysis on the limited data set provided, a clear improvement was
seen between surface captured under controlled lighting, such as
office lights, and uncontrolled lighting, such as sunlight, as seen in
Table 2. This comparison not only shows the challenges presented
of capturing flat surfaces in an uncontrolled environment, but also
that this is a viable method of measuring any variance in surface
distortions.
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