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Abstract

Multi-frame structured light in projector-camera systems affords
high-density and non-contact methods of 3D surface reconstruc-
tion. However, they have strict setup constraints which can become
expensive and time-consuming. Here, we investigate the conditions
under which a projective homography can be used to compensate
for small perturbations in pose caused by a hand-held camera. We
synthesize data using a pinhole camera model and use it to deter-
mine the average 2D reprojection error per point correspondence.
This error map is grouped into regions with specified upper-bounds
to classify which regions produce sufficiently minimal error to be
considered feasible for a structured-light projector-camera system
with a hand-held camera. Empirical results demonstrate that a sub-
pixel reprojection accuracy is achievable with a feasible geometric
constraints.

1 Introduction

Structured light (SL) profilometry has been used in projector-
camera systems as it offers high-density, high accuracy and non-
contact 3D mapping. It has been used extensively in applications
of projection mapping and to correctly display media content on 3D
surfaces [1–5]. However, the integrity of this method is predicated
on static equipment and, to a lesser extent, a static scene.

Introducing a hand-held camera to the projector-camera system
offers a great deal of flexibility, however a compensation mecha-
nism is required to correctly register each image so that the time-
multiplexed SL pattern can be correctly decoded. This is a diffi-
cult requirement, as banded SL patterns do not have the necessary
spatial features to correctly register to one-another between frames,
and are subject to the aperture problem.

A simple way to tackle the camera motion is to use a single-
shot spatially-encoded pattern to generate point correspondences
[6–8]. These methods offer robustness in the face of a dynamic
environment [9], however such approaches significantly reduce the
number of correspondences that the system is able to attain, with a
commensurate reduction in spatial resolution.

On the other hand, using time-multiplexed SL as described in
[5, 10], the maximum number of achievable correspondences is
equivalent to the number of projector pixels. In the application of
projection mapping, and the projection of content on irregular ge-
ometry, a greater number of correspondences is almost always bet-
ter.

The desired outcome of this paper is to study the robustness
of spatially-encoded SL patterns that allow the use of a hand-
held camera, while retaining the correspondence density of time-
multiplexed SL methods.

2 Background

2.1 Gray Code

The emphasis of this paper is to assess the ability of a projective ho-
mography (Section 2.2) to compensate for the motion of an unfixed
projector-camera system, while preserving the point cloud density
afforded by capturing multiple frames of structured light. Given that
the application requires pixel-level accuracy for projector calibration,
a temporally encoded address using structured light (Gray code, in
this case) is more appropriate. An example of Gray code SL pattern
can be seen in Figures 1a-1c. Note that due to the banding of the
Gray code patterns, there is an absence of features with which to
register frames to one-another.

(a)

(b) (c)

Fig. 1: (a) Overview of multi-frame SL pattern banding for 6-bit Gray
code. Visualization for gray code based SL frames number 1 to 3
and 4 to 6 are shown in (b) and (c), respectively.

2.2 Projection Model

A camera projection model [11] is defined as the projection of 3D
world points to the camera image plane

~x = KP~X (1)

where the vector ~X represents some homogeneous 3D world coor-
dinate, vector ~x represents the projection of world coordinate ~X on
to the camera image plane πc, K represents the camera intrinsic
parameters, and P represents the augmented camera pose all of
which are defined below:

~X =
[
X1 X2 X3 1

]> ~X ∈ R4 (2)

~x =
[
x1 x2 1

]>
~xi ∈ πc (3)

K =

 fx φ cx
fy cy

1

 (4)

where fx and fy are the camera focal lengths of the in the x and y
directions, respectively, φ is the skew, and cx and cy are the coor-
dinates of the camera principal point. To improve the constraints of
the calibration, the focal lengths in x and y will be assumed equal,
and the pixel skew will be assumed negligible, which leaves us with

K =

 f cx
f cy

1

 (5)

Finally, the camera pose P, used in (1), is defined as an augmented[
3×4

]
matrix, containing the rotation matrix R and translation vector

~t as:

P =
[

R ~t
]
, R ∈ SO(3), ~t ∈ R3 (6)

P =

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (7)

2.3 Projective Transform

For any set of image pairs, there exists a 3× 3 projective homog-
raphy H (with 8 degrees of freedom) that maps all points between
any 2 camera views defined by P1 and P2 if the change in pose is
rotational only, i.e.~t =~0 [11]:

P1 =
[

I ~0
]

P2 =
[

R ~0
]

(8)



Fig. 2: The setup to generate synthetic data. The distance between
c1 and c2 is applied on the xz plane, symmetric about the z-axis

H :~x1→~x2 (9)

Then the homography H offers a perfect mapping between P1 and
P2

~x1 = H~x2 (10)

Since the homography transform is of size 3×3, ~xi must be homo-
geneous coordinates.

3 Problem Formulation

If the camera motion could be locked simply to rotational motion,
then eq. (10) would solve our dilemma. However, since such a
steady hand is not a feasible assumption, we have to take into ac-
count some non-trivial translation between each pose of a series of
captured images. This changes (10) to an approximation

~̂x1 = H~x2 (11)

3.1 Reprojection Error

Since the 3D coordinates of the scene are known, the average 2D
reprojection error, e, for each point in a scene S

S = {~Xi} (12)

can be generated for each pose

e =
1
N

N

∑
i=1
‖~̂xi−~xi‖, N = |S| (13)

where ‖ · ‖ denotes the euclidean distance, and ~̂xi is the estimated
position of the point correspondence at index i given by

~̂xi = H~x′i (14)

The error in (13) is expected to be directly proportional to dcc and
inversely proportional to dsc

e ∝ dcc,
1

dsc
(15)

4 Methodology

To map the reprojection error of the projective transform, a pair of
synthetic cameras are generated, with the same intrinsics, a focal
length fx = fy and the same principal point coordinates cx1 = cx2 and
cy1 = cy2 . These cameras are assigned poses defined by a distance
to the scene, dsc, and the distance between the cameras, dcc. The
locations of c1 and c2 are defined as

τ1 =
[
− 1

2 dcc 0 −dsc
]> (16)

τ2 =
[ 1

2 dcc 0 −dsc
]> (17)

An illustration of the system geometry can be seen in Figure 2.
A point cloud, denoted by a set of points {~Xi}, sampled from an

existing mesh, is used to produce point correspondences between

Fig. 3: Top: The average 2D reprojection error in pixels defined
by (13) as result of combinations of ds,c and dc1,c2 . Bottom: error
regions. Navy: 0 < e ≤ 0.2; Blue: 0.2 < e ≤ 0.5; Teal: 0.5 < e ≤ 1.0;
Gold: 1.0 < e≤ 2.0; Yellow: e > 2.0

the camera image planes. The point cloud is normalized such that
the centroid lies on the origin

N

∑
i=1

~Xi =~0 (18)

and scaled uniformly using a scale factor, α, such that the range of
~X is limited along the z-axis

X3i −X3 j ≤ 1, ∀ ~X (19)

The above condition allows for the determination of the repro-
jection error as a function of the depth of the point correspondences.
This is important, as the error of the projective transform increases
for points that lie further away from the plane formed by the control
points defining the projective transform.

The rotation Ri for each camera is configured such that the prin-
cipal axis passes through the origin.

The matrix H, with 8 degrees of freedom, is inferred using the
Direct Linear Transform (DLT) algorithm described in [11] using 4
selected point correspondences. We opt for 4 points as that mini-
mizes the number of pixels dedicated to compensation, so that the
remaining camera pixels can be used to generate dense correspon-
dences.

Each pair of point correspondences (ui,vi) and (u′i,v
′
i) adds a

set of constraints defined by

Ai =

[
−ui −vi −1 0 0 0 uiu′i viu′i u′i

0 0 0 −ui −vi −1 uiu′i viu′i u′i

]
(20)

Using the minimum number of control points necessary to solve for
the system explicitly, therefore

A =
[
A1 A2 A3 A4

]T (21)

where A is the constrains matrix of size 8× 9 that can be used to
solve for the homography matrix as:

A~h =~0, ‖~h‖= 1 (22)

where~h ∈ R9 is a unit vector form of the homography matrix H.
As in [11], the system now is solvable using the Single Value

Decomposition.

5 Results

To evaluate the reprojection error of the projective transform, a pair
of synthetic cameras of the same intrinsics are generated, such that



(a) dcc = 0.001, dsc = 4.0
e = 0.129

(b) dcc = 0.005, dsc = 4.0
e = 0.594

(c) dcc = 0.01, dsc = 4.0
e = 1.191

(d) dcc = 0.05, dsc = 4.0
e = 5.964

(e) dcc = 0.001, dsc = 10.0
e = 0.105

(f) dcc = 0.005, dsc = 10.0
e = 0.092

(g) dcc = 0.01, dsc = 10.0
e = 0.185

(h) dcc = 0.05, dsc = 10.0
e = 0.926

(i) dcc = 0.001, dsc = 20.0
e = 0.007

(j) dcc = 0.005, dsc = 20.0
e = 0.026

(k) dcc = 0.01, dsc = 20.0
e = 0.046

(l) dcc = 0.05, dsc = 20.0
e = 0.229

Fig. 4: Examples of projective transforms for various values of dcc and dsc, and their corresponding 2D reprojection error e, where red
markers represent~x and blue represents ~̂x .

the focal length f = 3000 and the principal point coordinates are
cx,cy = (1632,1224). In general, regions shown in Figure 3 indicate
that less than 1px reprojection error is possible when constraints are
applied to the system geometry. It is important to note that since
the point cloud is normalized, the units of dcc and dsc are relative
to the size of the scene. Assuming that the observed point cloud
has a depth of 1m, the results shown in Figure 3 imply that at 16m
from the scene, the projective transform can compensate camera
motions with a magnitude of 5mm with a reprojection error of less
than 0.5px.

The error values of the projective transform corrections shown
in (13) are shown in Figure 4. For a constant value of dcc, an
increase in dsc results in an exponential decrease in reprojection
error. It is important to point out that while the reprojection error
decreases with an increase in dsc, such an increase has a practi-
cal upper bound, particularly for a camera with a fixed focal length.
This can be seen in Figure 4, where the footprint of the point corre-
spondences at dsc = 20 is barely 250× 120. In practical scenarios,
a much longer focal length is required to use sufficient camera pix-
els to develop dense point correspondences in a projector-camera
system.

6 Conclusion

The results indicate that there is a set of geometric constraints for
a projector camera system that affords a simple corrective process
for camera motion compensation. Average reprojection errors per
point correspondence of sub-pixel accuracy are achievable for feasi-
ble geometric constraints that would not require special equipment
or stabilizing hardware. This opens the door to time-multiplexed
structured light systems using hand-held cameras, and eventually
even mobile phones. Future work in this regard could concentrate
on identifying transforms that can improve the system robustness to
motion effects.
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