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Abstract

Solving the fundamental matrix is a key step in many image cali-
bration and 3D reconstruction systems. The goal of this paper is to
study the performance of non-linear solvers for estimating the fun-
damental matrix in projector-camera calibration. To prevent mea-
surements errors from distorting our understanding, synthetic data
are created from ground-truth camera and projector parameters and
then used for the assessment of four nonlinear solving strategies.

1 Introduction

Projector-Camera systems are now widely used in many applica-
tions, including 3D reconstruction and projection mapping [1, 2].
The goal of these systems is to estimate distortion parameters via
the so-called fundamental matrix, which includes the intrinsic and
extrinsic parameters of the projector(s) and camera(s) for correct
geometric projection to/from a given surface. The fundamental ma-
trix F relates point correspondences in two different image views
of the same 3D scene. Therefore, estimating the fundamental ma-
trix through point correspondences allows for the inference of the
needed intrinsic and extrinsic parameters embedded/implied in F .
F must satisfy

x>
c F xp = 0, (1)

where xc , xp are corresponding points in the camera and projector
planes, respectively. In [1], Li et al. have utilized a greedy mini-
mization algorithm with the following objective function in order to
estimate the fundamental matrix:

Ψ=CG (F )+λpCp (x′
c , x′

p )+λ f C f ( fc , fp ). (2)

Their proposed objective function explicitly asserts prior models for
the principal points (x′

c , x′
p ) and focal lengths ( fc , fp ), and then a

standard normalized 8-point algorithm with RANSAC to propose an
estimate of the fundamental matrix based on CG , the Gold-Standard
reprojection error.

This paper aims to investigate the solving strategies that pro-
duce the least residual error in estimating the fundamental matrix,
where the performance of the solving methods are assessed us-
ing the established objective function in (2). The error inherent in
the computation method is evaluated by employing the use of exact
synthetic data with known ground truth.

2 Experimental Evaluation

Evaluation Methodology: Four non-linear solving methods are
selected to compare the performance of the system: (a) Leven-
berg–Marquardt , which was originally used in the baseline algo-
rithm of [1, 3], (b) Quasi-Newton1 [3], (c) Trust Region [3], and (d)
Trust Region Reflective [3]. These methods are chosen for their
computational efficiency, ability to handle unconstrained minimiza-
tion, and robustness to initial estimate variations. Each method is
tested with the same priors and cost function of (2).

New synthetic data is generated using a 3D predefined model,
for which Figure 1 illustrates an example of 3D shape and poses for
the projector and camera. The intrinsic parameters of a projector-
camera setup are selected and used to compute the ground-truth
matrices. For convenience, the projector centre is set to be the ori-
gin, so the camera extrinsic parameters and baseline are measured
with respect to the projector. The 3D CAD model of the scene is
converted into a 3D point cloud from which points are sampled and
then reprojected into the image planes of the camera and projector:

x>
i = P>

i Xworld (3)
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1Quasi-Newton with Broyden–Fletcher–Goldfarb–Shanno algorithm was used.

Fig. 1: The proposed Projector-Camera scene for synthetic data
capture.
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Fig. 2: One case comparing the residual magnitude values for the
different solvers at 1500 (left) and 15000 (right) point correspon-
dences.

P is the projection matrix and index i indicates either a camera or
projector. The generated point correspondences are used as the
input to the objective function (2), from which each of the solvers
is used to estimate the fundamental matrix. To assess the perfor-
mance of the solvers, the residual error of the epipolar geometry (1)
is used, where it can be computed using the Kronecker product, ⊗,
and the vectorized version of the fundamental matrix as [4]:

Residual= (xc⊗xp )>vec(F ) (4)

Results: The four selected solvers are compared in terms of the
Residual reprojection error (4) using sets of 1500 and 15000 syn-
thetic corresponding points. As shown in Figure 2, we observe
the Levenberg-Marquardt method producing the highest l2-norm
and standard deviation of the absolute residual error over the data
sets, with the Trust Region Reflective method producing the lowest,
which suggests there is still significant room for improving the per-
formance the baseline 3D reconstruction. Consistent conclusions
are reached when the same experiment is repeated with different
point-correspondences and initial estimate of F . Future work in-
cludes exploring the sensitivity to noise and assessing performance
dependency on the accuracy of the initial (prior) estimates.
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