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Abstract

Harmful algal blooms (HABs) can have significant negative eco-
nomic, environmental and health impacts. Therefore the real-time
monitoring of phytoplankton is becoming increasingly critical for
proper management of water bodies. This work demonstrates that
instance segmentation on phytoplankton is possible on a small
dataset with a large number of classes. This is accomplished in
three main steps. First, 596 images of 21 different unialgal cultures
were captured using brightfield microscopy. Second, these raw im-
ages were processed using traditional computer vision methods to
rapidly create a binary mask. Finally, these raw images and binary
masks were used to train a deep learning instance segmentation
model. Experimental results show that high instance segmentation
performance can be achieved for certain algae types and mixed
performance for others by finetuning a Mask R-CNN deep convolu-
tional neural network with a small but highly diverse dataset of differ-
ent phytoplankton. These results show promising progress towards
building a real-time on-site monitoring phytoplankton system.

1 Introduction

Freshwater and marine harmful algal blooms (HABs) can have a
negative impact on different aspects of the the economy and hu-
man health. For example, HABs can negatively affect our drinking
water, recreational use of water, the tourism industry, and aquacul-
ture [1, 2]. The standard method to identify algae in water requires
a highly trained human taxonomist to manually identify and count
these algae through a microscope [3]. This process is both tedious
and time consuming, as well as can be prone to human error when
the taxonomist is fatigued. In addition, professional taxonomists are
in decline [4] and systematic biases between different taxonomists
result in variation in labels between professionals [5]. Many orga-
nizations that conduct water monitoring of algae, such as drinking
water utilities or aquaculture farms, do not have a trained taxonomist
on site. This further delays any analysis by a number of days as a
water sample must now be shipped off site. Therefore an automated
method to conduct on-site real-time analysis of phytoplankton is of
high priority to ensure proper operations.

Given the prevalent use and high performance of deep learn-
ing methods across many industries and data types, it’s natural to
explore the efficacy of deep learning to segment phytoplankton in
microscope images. Some recent examples of this can be by Ruiz
et al. [6] and by Bergum et al. [7]. Ruiz et al. looked at 126 im-
ages of 10 different diatoms and created an instance segmentation
classifier and found that the Mask R-CNN model had the highest
performance. Bergum et al. created their own dataset of 126 im-
ages and segmented copepods using the Mask R-CCN architec-
ture. In this work we collected 596 images of 21 different types of
algae and trained a Mask R-CNN model to explore the efficacy of
segmenting a high number of different phytoplankton classes. In
order to train the deep learning model we create ground truth labels
using traditional computer vision approaches. We discuss the bene-
fits and challenges of both the traditional computer vision approach
to create binary images as well as the deep learning approach for
instance segmentation of phytoplankton.

2 Methodology

2.1 Overview

Given a raw image of a pure algal strain there are two steps to ex-
plore the efficacy of instance segmentation with deep learning. The

first step is to segment each object the image using traditional com-
puter vision methods by creating a binary mask. Ideally a human
expert would annotate these raw images, however, given the sim-
plicity of the images and knowledge that every organism present in
a single raw image belongs to the same class, it is faster to use
traditional computer vision methods to create a binary mask. The
second step is to use this mapping from raw inputs to binary masks
to train a deep learning model to accomplish the task of instance
segmentation.

2.2 Image Binarization

To generate a mapping from an input image to a binarized mask
involves three steps. First, flatfield correction was applied to correct
for any illumination variation across the image. Next, Otsu thresh-
olding was used to create a binary image of different regions. Then,
given these regions, different morphological operations were used
to create a binarized image. Given the variation across the differ-
ent phytoplankton, the exact morphological operations change for a
given phytoplankton type. This was done by manually tweaking the
different parameters for a given phytoplankton type. This reinforces
the need to create an end-to-end classifier that does not require
manual changing the morphological operations for a given organ-
ism type. Hence deep learning methods for instance segmentation
are a natural choice to explore.

2.3 Instance Segmentation

There are a number of segmentation deep learning approaches,
each with different advantages and disadvantages. In their recent
survey, Minaee et al. [8] discuss convolutional networks, recur-
rent networks, attention based models, generative and adversar-
ial approaches, and other methods. Given the high performance
when compared to other instance segmentation methods [8], and
to match recent work [6, 7], the commonly used benchmark Mask
R-CNN model [9] was used in this paper.

3 Experimental Setup

3.1 Phytoplankton Selection

A number of different algae were selected from the Canadian Phy-
cological Culture Centre (CPCC) at the University of Waterloo and
the Charles Trick Lab at Western University. In alphabetical or-
der the 21 types of algae that were imaged were: Ankistrodesmus
falcatus, Chlorella kessleri, Closterium sp., Cylindrospermum sp.,
Dolichospermum sp., Euglena gracilis, Fistulifera pelliculosa, Meris-
mopedia sp., Microcystis aeruginosa, Monoraphdium contortum,
Navicula pelliculosa, Nostoc sp., Pediastrum duplex, Pleodo-
rina californica, Pseudanabaena sp., Scenedesmus obliquus,
Scenedesmus quadricauda, Staurastrum johnsonii, Stenomitos
tremulus, Tetradesmus obliquus, and Trichormus variabilis.

3.2 Data Collection

Data was collected using SAMSON: A Spectral Absorption-
fluorescence Microscopy System for ON-site-imaging of algae [10].
Given the modular design, SAMSON can be configured to use dif-
ferent wavelength LEDs, optics, and filters when collecting data. For
this instantiation, SAMSON was configured as a standard brightfield
microscope with a monochromatic sensor. A total of 596 images
were collected by using a Luxeon white LED as a light source, with
a 40x objective lens, and the FLIR Grasshopper 3 NIR monochro-
matic camera.



(a) Pleodorina californica raw image (b) Pleodorina californica binary image (c) Pleodorina californica prediction

(d) Scenedesmus obliquus raw image (e) Scenedesmus obliquus binary image (f) Scenedesmus obliquus prediction

Fig. 1: The raw image (left), binarized image (middle) and prediction (right) for both Pleodorina californica (top) and Scenedesmus
obliquus (bottom). Notice the prediction colours for Pleodorina californica (red) and Scenedesmus obliquus (yellow) and how many
Scenedesmus obliquus (yellow) have been classified as Pleodorina californica (red) in the bottom right image.

3.3 Machine Learning Framework

Given the small dataset, only a train and test set were created with
an 80/20 split. This resulted in 477 images in the training dataset
and 119 images in the test dataset. Given the readily available
GitHub repositories, OpenMMLab’s framework [11] was used to ac-
cess a pretrained Mask R-CNN model. Using the training dataset,
the model was then fine-tuned for 12 epochs using the Stochas-
tic Gradient Descent (SGD) optimizer with a learning rate of 0.02,
momentum of 0.9, and weight decay of 0.0001. Standard image
augmentation methods were applied when training.

4 Results & Discussion

4.1 Image Binarization

Given the raw images from the microscope, as seen in Figure 1(a)
and Figure 1(d), the binary images produced by using traditional
computer vision can be seen in Figure 1(b) and Figure 1(e). Given
the simplicity of the images, and the knowledge that each image is
of a known unialgal strain, traditional computer vision methods are
faster to build a quick dataset for prototyping. However, using this
approach results in undesired artifacts such as (1) holes / gaps in
the binary images, as seen in Figure 1(e), as well as (2) missing
fine-grained morphological features like antenna on certain phyto-
plankton. These artifacts come from attempting to build a single
computer vision pipeline for all 21 phytoplankton types. In order for
the pipeline to segment one algae type results in these artifacts ap-
pearing in other phytoplankton types. Therefore, to properly build on
this feasibility study, it is highly recommended that a human expert
annotate the raw images.

4.2 Instance Segmentation

Two examples of the resulting instance segmentation from the
trained model can be seen in Figure 1(c) and Figure 1(f). As seen
in Figure 1(c), our trained model correctly segmented and classi-
fied all the instances of Pleodorina californica (red). In general the
Pleodorina californica class performed well, as seen by the preci-
sion recall curve in Figure 2(b). This demonstrates that the model
is able to both correctly segment and classify phytoplankton.

However, this performance can not be observed across the en-
tire dataset. Figure 2(a) illustrates that the overall performance of
the classifier was moderate. This was due to many classes not
correctly segmenting the desired area, or incorrectly classifying a
segmented area. For example, in Figure 1(f) all the organisms are
Scenedesmus obliquus. However, many of these organisms are not
segmented by the classifier, and in this specific image only one clas-
sification of Scenedesmus obliquus (yellow) is correct. The majority
of the instances are classified incorrectly as Pleodorina californica
(red). This demonstrates that the machine learning model unper-
formed when segmenting and classifying, likely as a result of the
very small dataset available.

5 Conclusions & Future Work

This work illustrates that instance segmentation is feasible for 21 dif-
ferent phytoplankton cultures when imaging with a brightfield micro-
scope housed with a monochromatic camera and when fine-tuning
a pretrained Mask R-CNN deep learning model. While the over-
all performance was moderate, many classes achieved high perfor-
mance and were properly segmented and classified. In addition,
the poor performance can be attributed to a very small dataset with
a high number of classes, which is not ideal when training machine
learning models.



(a) Precision Recall Curve for all classes

(b) Precision Recall Curve for Pleodorina californica

(c) Precision Recall Curve for Scenedesmus obliquus

Fig. 2: The Precision Recall (PR) curves for (a) the average overall
classes, (b) for the Pleodorina californica class as seen in Figure 1
(top), and (c) for the Scenedesmus obliquus class as seen in Fig-
ure 1 (bottom).

Given this initial validation there are a number of experiments
and tests that should be conducted to further validate this approach.
First, to improve this work one must increase the amount and qual-
ity of data. Second, in this study ground truth regions were not
reviewed by a professional algal taxonomist. To further improve
this approach a larger dataset must be created and human experts
trained in phytoplankton taxonomy must validate the ground truth
labels. Third, other deep learning pretrained instance segmentation
models should be explored to determine the optimal architecture
for this task. Fourth, opposed to monochromatic sensor, a colour
senor should be used. Alternatively, additional wavelength bands,

such as fluorescence images, could be used to improve classifica-
tion results. Finally, future work must explore mixed lab samples as
well as environmental samples before this approach can be used in
a real-world environment.
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