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Abstract

The COVID-19 pandemic continues impacting all segments of the
global population, causing many problems, from health and well-
being issues to definite irretrievable damage to the society. Despite
the need for a quick and accurate response for early risk stratifica-
tion and diagnosis, rare and novel diseases, e.g., COVID-19, are
very difficult to diagnose. Although deep learning diagnostic algo-
rithms have shown promising results in a wide range of tasks, they
require a massive amount of labelled data for training. However, due
to the nature of novel diseases, availability of such huge amount of
well annotated data poses a great challenge to the learning algo-
rithms. Motivated by this, in this work, we present an open-source
deep meta learning solution based on siamese convolutional net-
works, called COVID-Net FewSE, that is able to detect COVID-19
positive cases from a limited number of X-ray images. Trained on
the COVIDx-CXR dataset, the model achieves 0.9 recall and ac-
curacy of 0.997 in detecting COVID-19 cases from X-ray images,
when only 50 training samples are available. Our experimental
results confirm that the proposed model outperforms conventional
machine/deep learning classifiers in COVID-19 detection when lim-
ited samples are available. The model and all the scripts are made
available to the public to enable reproducibility and encourage fur-
ther innovation in the field.

1 Introduction

The novel coronavirus disease (COVID-19), caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
widely spread all over the world since the beginning of 2020 [1]. The
first case of the COVID-19 disease was observed in China in De-
cember 2019 [2]. To date, there are more than 255 million confirmed
coronavirus cases all around the world with ≈5.1 million deaths re-
ported [3], with numbers increasing every day. Despite the rapid
evolution and emergence, the scientific community has dynamically
and actively responded to the disease spread, changing research
priorities according to the needs [4]. However, the high transmissi-
bility and mortality rate of the COVID-19 virus as well as witnessing
several waves of the pandemic have made early diagnosis crucial,
to instantly quarantine infected patients and start the treatment/care
procedure the earliest possible [1].

The reverse transcription polymerase chain reaction (RT-PCR)
is recognized as one of the main approaches in diagnosing COVID-
19 [5]. The RT-PCR testing is a time-consuming process due to the
complex processes involved with collecting samples, transporting,
and analyzing them. Moreover, the test suffers from low sensitivity,
i.e., high false negative rates [5]. Therefore, many infected patients
cannot be detected in time that increases the chance of infecting
other people unknowingly [6]. To overcome this inefficiency, other
alternative/complementary testing solutions are required.

Earlier works on medical images have shown that specific
anomalies are found in COVID-19 patients’ radiography such as
ground-glass opacities with rounded morphology [7]. Chest X-ray
(CXR) and computed tomography (CT) scans are two common
imaging modalities that are being used for COVID-19 detection,
severity assessment, and monitoring response to treatment [8]. De-
spite the higher detection sensitivity of CT scans, CXRs are more
commonly being used in clinical settings due to their many advan-
tages such as higher availability in general or community hospitals,
lower cost, lower radiation dose, and ease of operation [9], as well
as the availability of portable units [10]. But, interpreting chest X-
ray images to diagnose COVID-19 and distinguishing it from other
non-COVID-19 infections is a challenging and time-consuming task
even for radiologists, due to many similarities [11].

Deep convolutional neural networks (CNNs) have been mostly
utilized so far for COVID-19 classification. Despite being power-

ful image processing techniques, CNNs cannot correctly capture
relations between image instances in the dataset, unless they are
provided with a large dataset, including all possible transformations
[12]. Moreover, training such deep networks on massive datasets
is often a time-consuming task. Metric-based meta learning mod-
els, e.g., siamese networks, are alternative models that are able
to generalize from few examples by employing a unique structure
to rank similarity between input and without necessitating extensive
retraining [13]. Siamese networks can be easily scaled up to in-
clude more categories [14], an advantage that make such models
even more interesting in hard-to-control situations, e.g., spread of
a new disease. Motivated by these properties and to assist clini-
cians in the fight against the COVID-19 pandemic and as part of the
COVID-Net initiative [10, 15–17], in this work, we present an open-
source deep siamese network model, called COVID-Net FewSE,
for COVID-19 detection from X-ray images. Although siamese net-
works have been studied in the literature for several applications
(e.g., object tracking [18], palmprint recognition [19]), to the best
of our knowledge, this is the first work that employs transfer learn-
ing and presents an open-source few-shot deep siamese network
model for COVID-19 detection from X-ray images. We hope the
open-source nature of the COVID-Net FewSE encourage further in-
novation.

2 Data

We used the COVIDx-CXR dataset [10], to train, evaluate, and
validate our model. The dataset contains chest x-ray images di-
vided into three categories: 1) non-COVID pneumonia infection, 2)
COVID-19 positive infection, and 3) normal control cases. We ap-
plied a deep learning-based lung segmentation approach [20] on
the original data to detect lung boundaries from CXR images and
crop images such that they only contain the lung region. We re-
moved segmented CXR images of low-resolution or those that the
model could not correctly calculate the lung region. Table 1 shows
the distribution of the segmented images per category used in our
analytics pipeline.

Table 1: Distribution of the segmented images per category.

COVID-19 Non-COVID-19 Normal
Train 279 5,451 966
Test 99 100 100

3 Methods

We defined the problem as a 3-way n-shot classification problem
where n is the number of training samples per each category, and
3 is the number of categories. The goal of n-shot learning is to
classify unseen data as highly accurate as possible given the limited
number of training samples of size n. The model was trained on
pairs of images constructed from the training samples such that
images in half of the pairs belonged to the same class while in the
other half images in the pair sets were taken from different classes.
We named the first half as the genuine and the second half as the
imposite pairs.

We tested the model on the entire test set. For this purpose, we
generated genuine and imposite pairs for each single image in the
test set. For example, let’s consider a test image from the COVID-
19 class. We generated two test pairs for this test image. In the
first pair, the second image was taken randomly from the COVID-19
class in the test set. For the second pair, the second image was
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Fig. 1: High-level conceptual flow of the analysis.

taken randomly from either non-COVID pneumonia infection cate-
gory or normal control images in the test set. To find the label for
each test image, the pair with the lowest distance predicted by the
siamese model was considered. If the class of the second image
(from the pair with the lowest distance) was the same as the class of
the first image, it was counted as a correct identification and incor-
rect otherwise. Performance is reported based on number of correct
identifications. Fig. 1 shows the conceptual flow of the analysis.

We built the COVID-Net FewSE model as a deep siamese con-
volutional neural network that contains two identical fine-tuned pre-
trained ResNet-50 models [21] as the embedding extractors, both
sharing the same weights. The input is pairs of images and the
model learns a distance measure between them over the training
phase. We leveraged a pre-trained model as the embedding ex-
tractor since we have a limited dataset and our experiments proved
it to be better performing compared with a standard convolutional
neural network. Meanwhile, we tested several pre-trained models
such as Resnet-50 [21], VGG-16 [22], Inception [23], InceptionRes-
net [23] as the base encoder and found the best performance with
the ResNet-50 model. We added a customized layer to calculate
the L1 distance between the generated embeddings. Binary cross
entropy loss function is mostly used in the literature since it is a
common choice for a binary classification problem. We tested both
binary cross entropy and contrastive loss functions for performance
evaluation and model building and found a better performance for
the contrastive loss [24]. Input images were resized to 224x224 and
normalized. No data augmentation was used in the pipeline. We
used Adam optimizer with an initial learning rate set at 1e− 4. We
reduced the learning rate by a factor of 0.1 when the performance
stopped improving. Early stopping was also applied to stop the
learning process if no performance improvement is observed for 10
epochs. The model was trained for 30 epochs.

Fig. 2 shows the high-level architecture design of the COVID-
Net FewSE model. A pair of images, i.e., image 1 and 2 in the
figure, is fed to the model. The model contains two identical parallel
ResNet50 networks, sharing the same weights. Input images are
each passed through the fine-tuned pre-trained ResNet50 model to
obtain the feature embedding vectors. Then, these two embedding
vectors are fed to an L1 component-wise distance function to cal-
culate the similarity between the two images. The similarity value
is incorporated in the loss function. The embeddings are fed to the
distance function, followed by 2 dense layers with 128 and 32 neu-
rons, respectively, and dropout of 0.1. Finally, a dense layer with a
sigmoid unit is used to generate the similarity score. Dropout and
early stopping were used to prevent overfitting.

4 Results

We compared the performance of the siamese model in diagnosing
COVID-19 positive cases with three baseline models: 1) random
forests model (RF), 2) 2-layer vanilla CNN (vCNN), and 3) 1-nearest
neighbors (1-NN). We were mainly interested in analyzing how does
the performance of the COVID-Net FewSE model change versus
the number of shots and if at those number of shots the baseline
models can perform well.

Fig. 3 shows the performance of COVID-Net FewSE, RF, 1-

Fig. 2: The COVID-Net FewSE high-level architecture design.

Fig. 3: Performance of the COVID-Net FewSE and three baseline
models, i.e., random forests, vanilla CNN, and 1-NN, for various
n-shot learning settings.

NN, and vCNN models for various 3-way, n-shot learning settings
(n∈{5,10,25,50,75,100,150,200}). As seen, the COVID-Net FewSE
model outperforms other baseline models in detecting COVID-19
positive cases. When there is only 50 shots available for training the
model, COVID-19 recall of the COVID-Net FewSE model reaches
the value of 0.9, outperforming the other models significantly. Also,
as expected, performance of the vCNN model gradually increases
as the number of shots available for training augments. Therefore,
with having a large set of images available, performance of the CNN
model would be expected to reach/pass the few-shot model.

Fig. 4 shows the COVID-Net FewSE model training and vali-
dation accuracy and loss for 3-way, 50-shot learning setting. As
seen, the model training and validation converge in the final epochs.
During our experimentation, we also noticed that the COVID-Net
FewSE model validation accuracy converge relatively fast, with few
major oscillations in final epochs.

5 Conclusion and Future Work

Although deep learning diagnostic algorithms have shown promis-
ing results in a wide range of tasks, they require a massive amount
of labelled data for training. However, due to the nature of novel
diseases, availability of such huge amount of well annotated data
poses a great challenge to the learning algorithms. As part of the
COVID-Net initiative and using a highly imbalanced dataset of chest
x-ray images with few COVID-19 observations, in this work, we
presented a few-shot siamese convolutional neural network model,
called the COVID-Net FewSE, able to detect COVID-19 positive
cases with high accuracy, even if a limited number of examples is
available. The model and all the scripts are made available to the
public to enable reproducibility and encourage further innovation.

A fine-tuned ResNet-50 model, pre-trained on large ImageNet
[25] data, was embedded in the COVID-Net FewSE model to en-
hance its performance by providing feature embeddings from the
input images. In addition, we used a tailored lung segmentation
model [20] to localize the lung region in the the x-ray images.

Our results show that the proposed model offers an accurate
solution even if the number of images for the given disease (here
COVID-19 infection) is limited. In addition, the model outperforms
several examined baseline models, especially when only few shots
are available for training. This property is crucial for detecting new
diseases/pandemics and could accelerate patients screening and
treatment planning.

As future research directions, we are currently working on two
main directions to improve the COVID-Net FewSE model further: 1)
The model proposed in this work was trained on a portion of the
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Fig. 4: Training and validation accuracy and loss for 3-way, 50-shot
learning setting.

COVIDx-CXR v4 dataset to ensure the feasibility and confirm the
analytics pipeline. As the next step, we will be using the latest ver-
sion of the COVIDx-CXR (i.e., v8) that contains more data points. 2)
We are incorporating an interpretability module to obtain a deeper
understanding of the model learning process and ensure that the
model’s decisions are based on actual patterns. The outputs of the
interpretability module will be verified by our contributing clinicians
in the COVID-Net team.
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