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Abstract

While not physiologically accurate, deep neural networks have a
long history of being inspired by the brain. Of particular interest to
computer vision researchers are the behaviour of neurons in the
V1 Visual Cortex when responding to visual stimuli. Understanding
how V1 neurons encode visual stimuli might offer insight on how to
improve design of computer vision algorithms and “neural" repre-
sentations of visual data. It has been known that neurons in the V1
cortex exhibit responses that can be modeled by 2D-Gabor filters.
Knowing that, we wonder what kinds of functions a population of
rate neurons with Gabor-like encoders would be able to perform on
images. In this work we explore, via rate neuron modeling methods
as described in the Neural Engineering Framework, what kinds of
low-level image operations can be accurately encoded by a pop-
ulation of sparse Gabor encoders. Understanding what kinds of
low-level image operations can be performed well by our simulated
population of neurons could provide insight as to what kinds of fea-
ture extractions can plausibly be performed by the V1 visual cortex.
We find that compared to the other operations tested such as Sobel
filtering and high-pass filtering, our modeled V1 neuron population
is better at low-pass filtering operations such as average filtering,
as measured by the RMSE of decoding. The reasons for this are
unclear for now and require further investigation.

1 Introduction

The primary visual cortex, or V1 cortex is the part of the brain that
is responsible for processing visual sensory input coming from the
retina via the lateral geniculate nucleus, a relay center for the visual
pathway. It could be viewed as the part of the brain responsible
for processing the “pixels" depicting the outside world that are ren-
dered onto the retina. Being the first stage in visual processing,
the V1 cortex is understood to be responsible for the initial stages
of feature extraction and pattern recognition. Better understand-
ing of the V1 cortex has greatly advanced research in both human
and computer vision. Most notably, the works of Hubel and Weisel
in [1, 2] dramatically shifted our understanding of visual process-
ing and neuron organization. One of their key insights is that V1
neurons are organized into a hierarchical system to extract com-
plex features from the retinal image [1, 2]. Furthermore, they also
described how different cells can vary in the size of their receptive
fields and may be selective to different kinds of simple or complex
input patterns.

The research of Hubel and Weisel and many others studying
the mechanisms of the V1 cortex would eventually inspire the con-
volutional neural network [3] and its precursor, the Neocognitron [4].
However, despite an explosion in design of brain-inspired image
processing algorithms in recent years, not much research has been
done on mathematically understanding what kinds of image pro-
cessing the V1 cortex is actually good at. [5] demonstrates how
having different densities of neurons assigned to different receptive
field sizes effectively carries out an edge filtering computation of
the image that is present on the retina. In this work, we wish to
expand on this idea and explore what other kinds of low-level im-
age processing operations a population of V1 cortex neurons may
be good or bad at computing. To do this, we make use of the fact
that V1 neurons have been observed to exhibit 2D-Gabor filter-like
responses [6]. Thus, using the Neural Engineering Framework [7],
we model a population of V1 neurons as a collection of rate approxi-
mate Leaky-Integrate-and-Fire (LIF) neurons with sparse Gabor en-
coders. The firing rate, G[J], (or activation function) is described in
Eq. 1 where J is the current induced when encoding the stimulus x,
and τre f ,τRC are parameters of the neuron.

G[J] =

{
1

τre f −τRC ln1− 1
J
, if J > 1

0, otherwise
(1)

2 Methods

2.1 Neural Engineering Framework

In order to quantify how “good" our simulated V1 population is at
performing a given image-processing operation, we make use of the
tools defined in the Neural Engineering Framework (NEF) [7]. NEF
describes a method for modeling the process by which an input
signal x is non-linearly encoded into a population of neurons and
represented by their collective firing rates, or in more physiologically
accurate models, their simulated spike trains. The input stimulus is
first encoded as a current as described by Eq. 2 where e,α,Jbias

are the neuron’s encoding vector, gain and bias respectively. The
encoded current can then be converted to a firing rate via the firing
rate function (such as Eq. 1). Instead of using a firing rate value
to approximate how often a given neuron is firing over time in the
presence of a stimulus x, we can also directly simulate a neuron’s
spiking activity over time and get out a set of spike train’s for each
neuron. Each neuron’s firing rate or alternatively, their simulated
spike trains collectively form the population’s activity matrix A (also
referred to as a population code). This is illustrated in Eq. 4 where
E is now a matrix containing the encoding vectors of each neuron
in the population. As seen in Eq. 3, each column of E corresponds
to the encoding vector of a neuron in the population.

Subsequently, NEF outlines how we can linearly decode the
population code A to recover the originally encoded signal as x̂ (see
Eq. 5 where D are decoding parameters). Alternatively, if we wish
for the neurons to apply a given function f (x) we can also decode
back the encoded transformation as f̂ (x) (see Eq. 6 where D f are
the decoding parameters for computing f (x)). The error between
our decoded f̂ (x) and the ideal f (x) quantifies how good our neu-
ron population is at performing the desired operation. We will use
root mean-squared error (RMSE) to describe decoding error.

Figure 1 shows the high-level process of encoding an image x
into a population of neurons and then the process by which the im-
age operation, F(x) is computed. It is important to highlight that
instead of learning the encoders E and decoders D f via backprop-
agation and a loss function, the encoders are randomly generated
Gabor filters (as dictated by findings in [6]) and the decoders are
solved for using least-squares minimization to solve Eq. 6 over a set
of sample inputs (ie. our training data). Thus, F̂(x) is the output of
our neuronal layer and compared to the ideal function computation
F(x).

J = α⟨e ·x⟩+ Jbias (2)

E = [e1
T ,e2

T , ...,en
T ] (3)

A = G[J] = G[ET x] (4)

x̂ = DA (5)

F̂(x) = D f A (6)

2.2 Image Processing Operations

In [5], the author primarily focuses on demonstrating the capability
of V1 neurons to perform edge detection filtering. We would like to
start with a simple V1 population model and simulate the computa-
tion of an expanded set of low-level image operations. These oper-
ations range from basic filtering such as low-pass filtering, to more
complex inverse tasks such as image deblurring. We picked these
as our initial operations since they are very common in various im-
age processing applications. For example, the 3×3 Gaussian ker-
nel with σ = 0.85 is often used because its fixed point approximation
involves only powers of 2. The complete list of the operations we
model is below. There are eight different operations in total when
counting operation variants:



Fig. 1: Flow chart showing how we encode an image into the population of rate approximate Gabor neurons and then decode out the
result of the neurons computing the desired low-level operation, F̂(x). The decoders D f are computed via least-squares minimization of
Eq. 6 over our entire training set. The computed decoders are then used for all testing inputs. We use the X-direction Sobel filter as an
example.

• Gaussian blur with σ = 0.85, kernel width of 3.
• Averaging filter with varying square kernels of width {3, 5, 7}.
• 3×3 Sobel filtering in each of the X and Y directions.
• 3×3 High-pass filtering via unsharp filtering; we use the same

Gaussian blur as listed above.
• Image deblurring, specifically the inverse of a 3×3 Gaussian

blur with σ = 0.85.
This is by no means an exhaustive list of the low-level image

operations that could be modeled. Computing the Laplacian, image
sharpening, and image denoising are some other computations that
we wish to explore in future work.

2.3 Experiments

We use the CIFAR-10 dataset [8] and convert it to the YCrCb colour
space before taking the Luminance channel, Y . This saves compu-
tation and furthermore, for many low-level image operations involv-
ing the structure of the image, the human visual system is known to
be more sensitive to changes in the Y -channel. We use a population
of 2500 neurons to cover the entire 32×32 image. Thus, each neu-
ron’s encoding vector is of size 1024. However, since we are using
sparse Gabor encoders with a receptive field of K, there are only
K ×K non-zero elements in each encoding vector. As mentioned
in [5], the V1 cortex often has bundles of thousands of neurons
for each spatial location/region. Thus, in future works it would be
more accurate to use a convolutional transform to model the neu-
ron population encoding. However, due to computation and time
constraints, we use a population of N = 2500 neurons where each
neuron is randomly assigned a location of the image to attend to.

For our main experiments, there is an even distribution of neu-
rons having receptive fields of size K ∈ {3× 3,5× 5,7× 7} (we will
call this our main model) and we compute the RMSE of decoding
each of the 8 above-listed image operations from the neuron popu-
lation code. Next, we seek to investigate the relationship between
population size N and RMSE as well as the relationship between re-
ceptive field and RMSE. For the population size ablation, we com-
pute the RMSE for each of the 8 operations for V1 neuron popu-
lations of size N ∈ {500,1000,1500,2500}. These populations also
have an even distribution of neurons among the three different re-
ceptive field sizes mentioned above. Finally, for our receptive field
size ablation, we use a population size of N = 1250 neurons with
all neurons having the same given receptive field size K which we
ablate through the set of three receptive fields mentioned above. In
all cases we use rate approximate neurons for our simulations. Fu-
ture work should move to using spiking neurons as they are more
biologically accurate.

3 Results and Discussion

Table 1 shows test RMSE for each of the 8 operations. Each pop-
ulation model is defined by the receptive field of the neurons. For
example, K3 denotes a population where all neurons have receptive
field of size 3× 3. “Mixed" refers to our main model. As somewhat
expected, having only larger receptive fields appears to increase
decoding error. This would make sense since we have started off

modeling very local operations. We observe the lowest error for
performing the various low-pass filtering operations. However, it is
currently unclear why. Further investigation is needed.

Figure 2 shows how log(RMSE) changes as a function of pop-
ulation size N for each of the operations. RMSE decreases with
larger neuron populations as expected which suggests that the dif-
ferences in RMSE are inherent to the operation and not due to noise
in an insufficiently large neuron population. Figures 4 and 3 show
how RMSE changes as a function of receptive field size. We plotted
the RMSE of the Sobel filters separately to better show the shape of
the curves. It is a bit surprising that the error even increases with re-
ceptive field size for the 7×7 averaging filter. Though this may also
have to do with the resolution of our input images being incredibly
small. At K = 7, the receptive field covers almost a quarter of the
image and thus local image statistics would likely be lost. It will be
important to use larger input resolutions for our results to be more
generalizable.

Finally, Table 1 also shows the decoding error of a population
with neurons that have a single, fixed receptive field so we can
compare to our main model. From [5], we know that the num-
ber of neurons for different receptive field sizes follow an empirical
Gamma distribution. It would be interesting to see how decoding
error changes with different distributions and to include much larger
receptive fields in our model.

In this initial study, we have only modeled the sparse Gabor
encoders of a single, small neuron population. In future works, it
would be useful to observe how accuracy can improve with a few
feed-forward connections between populations. Furthermore, we
know from works such as [9], [10], [11] that neurons in the V1 cor-
tex contain both lateral and feedback connections. Previous works
have suggested that these connections may be significant in en-
abling the large receptive fields of V1 neurons and thus we should
also model them if we wish to gain an accurate understanding of
what kinds of low-level image operations are mathematically plausi-
ble for the V1 cortex.

4 Conclusion

We present an initial study on modeling the ability of V1 neuron pop-
ulations to compute low-level image operations. Better mathemati-
cal understanding of what the V1 cortex is good/bad at computing
could yield further insights for human and computer vision. Future
work includes modeling a greater number of low-level image opera-
tions as well as improving the accuracy of our V1 population model
such as using spiking neurons, modeling multiple neuron layers and
including lateral and feed-back connections in these layers.
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