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Abstract

Motion estimation is a central problem of computer vision essential
to many applications, such as optical flow and egomotion estima-
tion. In traditional frame-based cameras, motion estimation relies
on the brightness constancy assumption. An inherent limitation of
this assumption is that its temporal resolution is bounded by the
fixed frame-rate of the camera. Address Event Sensors (AES) are
bio-inspired vision sensors characterized by low latency, high dy-
namic range and high resilience to motion blur. Contrary to tradi-
tional frame-based cameras which output frames at fixed time inter-
vals, AES generates asynchronous events at microsecond resolu-
tion each time the local brightness of a pixel changes. However,
most of the current Address Event (AE) approaches to estimate
motion have not been effective at exploiting these characteristics.
They mostly rely on spatial smoothness that require accumulat-
ing events into grid-like representations for processing, eliminating
most of the AES advantages. We conjecture that processing events
asynchronously as they arrive should lead to better use of the cam-
era’s temporal resolution and hence result in motion estimates that
are more resilient to rapid and shaky motions. In this paper, we
present an asynchronous particle filter approach using BCE-based
likelihood function, to solve for planar motion velocities using AES.
It uses the AE data as the only source of information relying on a
single event track, while freeing events from the spatial smoothness
assumption. It is, thus, capable of exploiting the advantages offered
by AES for motion estimation. Our results for general planar motion
estimation are on par with state-of-the-art results.

1 Introduction

Motion estimation based on computer vision has significantly im-
proved over the past years. It is a key technology for many ap-
plications, such as optical flow, camera egomotion, and tracking.
In traditional frame-based cameras, the reliance on the brightness
constancy assumption in motion estimation [1] results an inherent
limitation. It bounds the temporal resolution by the frame-rate of the
camera. On the other hand, motion estimation is one of the main
applications of Address Event Sensors (AES) [2], owing to the fact
that, under constant illumination, AES are motion sensors. Further-
more, the low latency (microsecond resolution) and high dynamic
range (140 dB) of AES are additional advantages with the potential
to alleviate the limitations imposed by the frame-based cameras on
motion estimation.

AES approaches for motion estimation rely mostly on an as-
sumption of spatial smoothness, where events in a spatial neigh-
borhood are assumed to have similar velocities. Additionally, asyn-
chronous methods [3] for motion estimation are sensitive to differ-
entiation errors and require additional information for event-by-event
processing, resulting in inconclusive estimates. On the other hand,
the dominant stream of approaches accumulates events into grid-
like groups. [4], which suffer from limitations including accumulation
windows that do not contain enough information, adapting to fast
motion, the aperture problem, inaccurate estimation due to viola-
tion of the constant velocity assumption within a temporal window
(typically in ms close to the traditional cameras frame rate). These
limitation end up undermining the AES advantages in motion esti-
mation .

We conjecture that to exploit AES to their full advantages in
solving the motion estimation problem, events should be processed
asynchronously, on an event-by-event as soon as they fire. To real-
ize that, one of the main challenges to address is making use of AE
information to achieve single event tracking without spatial smooth-
ness. Probabilistic Filtering techniques are the most common way
used for asynchronous processing of events. In AES, these meth-
ods [5, 6] focus on designing likelihood functions for the filter. How-
ever, filtering techniques in AES rely on the availability of additional
information (3D maps, grayscale images, external sensors, etc).

We present an asynchronous particle filter approach using a
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Fig. 1: Flow chart of an asynchronous particle filter algorithm for
planar motion estimation.

BCE-based likelihood function to solve for planar motion velocities
using AES. The filter uses AE data as the only source of informa-
tion. The BCE is used to derive an objective (likelihood) function
for a given velocity by projecting backwards an incoming event, and
minimizing the distance between this velocity and all possible can-
didates generated by that constraint. Our results on planar motion
estimation show that our approach achieves state-of-the-art results
by estimating optical flow accurately.

2 A Particle Filter for Asynchronous Planar Mo-
tion Estimation

In planar (2D) motion scenes where the camera moves parallel to a
plane of motion, i.e. with a known depth Z and no rotational move-
ment, the optical flow (u,v) is related to the camera’s translational
velocity (Tx,Ty) by

(u = f
Tx

Z
,v = f

Ty

Z
). (1)

To estimate the planar motion of the camera over time, we use a
particle filter with a multi-hypothesis capability to cope with the AE
data on an event-by-event basis as soon as an event fires. The sys-
tem overview is illustrated in Figure 1. For an event e = (x,y, t, p) fir-
ing at time t, our filter at time t is represented by a list of N particles,
P(t) = {P(t)

1 ,P(t)
2 , ...P(t)

N }, where 1 ≤ i ≤ N . Each particle consists of

a hypothesis of the current state X t
i = U (t)

i which estimates the OF

vector U (t)
i = (u(t)i ,v(t)i ) ∈ IR2. Note that estimating the OF vector

U (t)
i is equivalent to estimating the camera’s 2D translation velocity

vector T (t)
i = (Tx

(t)
i ,Ty

(t)
i ) ∈ SO(2) for planar motion.

For the motion prediction step of our filter, we adopt a standard
constant motion model where the estimated average motion optical
flow of a particle at any given moment is stable but the variance of
the estimation is variable.

In the measurement update step, we update the weights of the
perturbed particles by applying Bayes rule to each particle know-
ing that the weights will be normalized afterwards. We present a
BCE-based likelihood P(z| U(t)

i ) for each particle in the form of an
exponential decay function:

P(z |U (t)
i ) = exp(−αpL(t)

di
(e)), (2)

where αp is a scaling decay parameter, and L(t)
di
(e)) is our asyn-

chronous distance objective function derived from the BCE and
evaluated at each particle i. For each input event e(x,y, t, p) let
E(ê,ds) represent the set of events within a maximum spatial radial
distance ds of ê, where ê is the predicted event at location (x̂, ŷ) and
time t − dt, denoted by ê = (x̂, ŷ, t − dt, p). (x̂, ŷ) is obtained by back
projecting e from time t to time t−dt using a constant velocity model.
The spatial search window is 3×3 and the temporal search window



is 50µs. Then the distance cost corresponding to a particular input
event can be written as:

Ld(e) = min
e∈E(ê,ds)

(D(e, ê)), (3)

where D is a distance metric in space, time and polarity between
two events ei and e j defined as follows:

D(xi,yi, ti, tpi,x j,y j, t j, t j) ={
rt |ti − t j|+ ||(xi,yi),(x j,y j)||, if pi = p j

dmax otherwise
(4)

where rt penalizes the deviation in time, dmax is a maximum spatio-
temporal distance parameter.

Initially, all particles are uniformly initialized to cover a large
range of image velocities, with the same weight. The likelihood
score is computed using a history component, which represents
the memory of our particle filter as shown in Figure 1. The history
stores and updates two separate channels one for each polarity,
i.e. an event with positive polarity uses a the history of all posi-
tive polarity measurements. When the filter requires a likelihood to
update its measurement step, it will use the history component to
find the minimum distance score for a certain hypothesis (velocity)
given the current measurement event. After assigning a likelihood
to each particle, we normalize the distribution, then apply standard
systematic resampling. Finally, a mean OF estimation, for every
event measurement, is saved in a shape of weighted average over
all the particles.

3 Results

We first show our results on synthetic dataset generated by an
event-based data simulator we created to simulate the AES. Fig-
ure 2 shows a camera moving with a linearly increasing velocities
in the x and y directions. Each plot show the optical flow prediction
(red), ground truth OF (green), and particles (black) vs Events. For
better visualization we plot a prediction for every 100 events. It is
clear that our approach can accurately estimate the planar motion
flow.

Fig. 2: Our asynchronous approach accurately tracks a camera
moving with linearly increasing velocities in the x and y directions.
Comparison of the ground truth (green) and our predicted (red) ve-
locities. Particle distributions are shown in black.

For real events data evaluation, we used the state-of-the-art
Event-Camera Dataset and Simulator [7]. It contains a series planar
static scenes which were collected via the DAVIS AES [2]. Table 1
shows our results against real event data for planar motion estima-
tion, evaluated against one of the main AES approaches for optical
flow [4], and the MATLAB implementation of the LK frame-based ap-
proach using the grayscale images from the provided with dataset.
Our approach clearly outperforms the synchronous main stream of
AES relying on the spatial smoothness assumption. The latter fur-
ther highlights the importance of exploiting AES to their full advan-
tages. Additionally, AES significantly outperforms the frame-based
approaches, especially on the high dynamic range (hdr) sets, where
the LK approach was failing due to the quality of the grayscale im-
ages affected by the large intensity differences in those scenes. Fig-
ure 3 shows the Relative Endpoint Error (EE) vs events for the slider
far sequence over a sample of 100,000 events. It also shows the
relative EE for the first few thousands of events used in the initial
estimates.

Table 1: Evaluation of our asynchronous planar motion approach
against the main TS approach called SAE [4], and the frame-based
Lucas and Kanade [1]. Relative Average Endpoint Errors (AEE) are
reported.

Sequence slider far slider close slider hdr far slider hdr close

AAErel [%] AAErel [%] AAErel [%] AAErel [%]

Ours 0.95 1.1 0.97 1.08
SAE [4] 3.9 3.7 4.9 4.6

Frame-based LK [1] 14.7 13.9 - -

Fig. 3: Relative Endpoint Error (EE) vs a sample of 105 events for
the slider close sequence.

4 Conclusion & Future Work

In conclusion, we presented an asynchronous particle filter ap-
proach to solve for planar motion estimation using Address Event
Sensors. We introduced a BCE-based likelihood distance function
for the filter, which is computed via a history of events created for
our particle filter. Our results showed that our approach is capa-
ble of accurately estimating the planar motion for simulated data,
and achieving state-of-the-art results on real events data. We are
working on extending this approach to estimation the general mo-
tion using Address Event Sensors.
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