
Simulator for the OREO robotic head
Rajan Iyengar, University of Waterloo
Jack Zhu, University of Waterloo
Bryan Tripp, University of Waterloo
Email: srk.iyengar@gmail.com

Abstract

Eye movements are essential to human vision, and may become
increasingly important in robots as their visual sophistication in-
creases. We previously developed OREO, the first robotic head
that matches the human visual system in eye movement velocity,
range of motion, and stereo baseline. The programming and train-
ing of robots is greatly facilitated by simulation, but no simulator has
been available for OREO so far. A useful simulator for OREO must
provide realistic and varied visual input, in addition to modelling its
motion physics. Here we present an OREO simulator that combines
a physics model, implemented in PyBullet, with visual stimuli from
AI Habitat. We briefly describe an example application and future
work.

1 Introduction

A key design feature of the human visual system is that only a small
region in the central visual field is analysed in detail. This requires
frequent eye movements to understand a scene, and ultimately al-
lows sophisticated visual understanding on a practical energy bud-
get. Artificial vision on standard hardware such as GPUs is much
less energy efficient than biological vision, suggesting that increas-
ingly sophisticated artificial vision systems may benefit from a re-
lated strategy in the future.

OREO [1] shown in Fig. 1 is a robotic head that approximates
key human visuo-motor capabilities through its baseline for stereo
image capture and its ability to saccade, verge, and fixate. It has
three degrees-of-freedom (DOF) for the neck and head movements
and supports saccade-like camera movements in both yaw and
pitch through two independent additional degrees-of-freedom for
each eye.

Training such a physical robot is fraught with practical difficulty.
Simulation is an important and standard alternative in robotics. De-
veloping candidate solutions through simulation can reduce wear
and the risk of damage, and increase the speed of conducting ex-
periments. However, simulations that are not sufficiently realistic
may not generalize well to hardware. In this paper we describe a
simulation system for OREO within Habitat-Sim [2, 3] that uses Py-
Bullet [4] to model OREO’s physics. Habitat-Sim provides detailed
scans of real environments that can provide sufficiently realistic vi-
sual stimuli for many purposes. We elaborate on the various parts
and extensions that make up the simulation system.

2 System Design

The simulation system implements a vision capability within Habitat-
Sim for OREO to traverse and view 3D scenes. It uses PyBullet to
enforce the limits of OREO’s movements, identify collision among
OREO parts and calculate rotation quaternions for any gaze direc-
tion corresponding to the yaw and pitch angle of the eyes or the
neck. Then, given 3D positions and orientations of each camera
from the PyBullet model, it captures video frames from these per-
spectives from Habitat-Sim.

2.1 Integration with Habitat-Sim

Habitat-Sim provides egocentric visualization of large-scale 3D
scene datasets. An agent with two independently rotating RGB
sensors is configured within Habitat-Sim to mimic OREO’s baseline.
Optical parameters like sensor dimensions and field of view (FOV)
angles are adjustable, allowing us to match various lenses that can
be used on OREO. The two sensors can verge to fixate on the same
point or gaze towards the same direction of a scene with respect to
Habitat-Sim’s world coordinate system (WCS). We have separated
the Habitat-Sim agent rotation into two components, body rotation

Fig. 1: Top, The physical OREO robot. Middle, Rendering of PyBul-
let physics model of OREO. Bottom, Example OREO-perspective
image from Habitat-Sim (left eye).



Fig. 2: Sample stereo images from the OREO model in one of the
Habitat-Sim environments. Top, image from left eye. Bottom, image
from right eye.

of an agent entity carrying OREO and the separate head-neck ro-
tation of OREO. We track them separately to adhere to yaw, pitch
and roll limits of OREO’s head-neck rotation.

2.1.1 Coordinate Frames, Rotations, and Translation

Within the simulation system we maintain four coordinate frames.
The left and right sensor frames have their origin at the center of
the eye on either side of the frame for the head-neck. Head-neck
rotation impacts the eye sensor positions and orientations, and the
eye sensors can also rotate independently of the head. The imag-
inary body carrying the robot head has its own coordinate frame.
The head-neck of OREO and the the body frame together deter-
mine the total rotation of the agent frame within Habitat-Sim for any
movement. Moving the eye sensors amounts to aligning the gaze
direction with the viewing axis of the sensors. Only the body frame
can translate independently.

2.1.2 Fixation and Vergence

Each eye sensor can be made to to fixate to a 3D point or align with
a gaze direction in the WCS. To mimic vergence, OREO eyes need
to orient toward a common point. For a known 3D point, the unit
vector connecting the point to the center of the lens provides the
yaw and pitch for each eye.

2.2 PyBullet simulation and integration

The PyBullet simulation and integration is essential to ensure that
the mechanical movements necessary for OREO to rotate are exe-
cuted without resulting in any mechanical collision between moving
parts. It also generates the rotation quaternion for any given gaze
position for the different joints. We use a Unified Robot Description
Format (UDRF) file representation of the geometry of OREO in ‘DI-
RECT’ connection mode with physics simulation. The limits of the
degrees of freedom are imposed outside the Pybullet model by the
simulation software. The yaw and pitch of each eye is controlled by
two linear actuators in OREO, and we set the linear actuator posi-
tions as needed to achieve desired gaze directions.

3 Current and Future Work

We are using the simulation system to model task-free visual atten-
tion using stereo images (Fig. 2). This work only uses the kinemat-
ics of the PyBullet model. However, the PyBullet model’s dynamics
can also be used in combination with Habitat-Sim. Separately, the
model dynamics are being used to develop an improved controller
for the robot. Future extensions of this work will include a foveated
rendering pipeline (with greater magnification in the image centre)
to simulate an alternative foveated lens.

References

[1] S. Huber, B. Selby, and B. Tripp, “OREO: An open-hardware
robotic head that supports practical saccades and accommoda-
tion,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
2640–2645, 2018.

[2] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*,
Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Ma-
lik, D. Parikh, and D. Batra, “Habitat: A Platform for Embodied AI
Research,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2019.

[3] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao,
J. Turner, N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets,
A. Gokaslan, V. Vondrus, S. Dharur, F. Meier, W. Galuba,
A. Chang, Z. Kira, V. Koltun, J. Malik, M. Savva, and D. Ba-
tra, “Habitat 2.0: Training home assistants to rearrange their
habitat,” arXiv preprint arXiv:2106.14405, 2021.

[4] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.


	Introduction
	System Design
	Integration with Habitat-Sim
	Coordinate Frames, Rotations, and Translation
	Fixation and Vergence

	PyBullet simulation and integration

	Current and Future Work

