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Abstract

A critical step in the clinical workflow for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) patients is lung disease
severity assessment, providing valuable information to aid in ef-
fective patient care and management as well as treatment plan-
ning. Given the difficulty of performing such assessments by health-
care workers and the necessity of expert radiologists who are al-
ready burdened by the significant load caused by the pandemic,
one promising direction is the use of computer-aided decision sup-
port systems powered by deep learning. An important design con-
sideration in the building of deep neural networks for SARS-CoV-2
disease severity assessment is in the way severity scores are en-
coded, as it can have a big influence on both the training and in-
ference aspects of the neural network. In this study, we explore
the performance impact of different severity encoding strategies for
deep learning-based severity stratification of COVID-19 patients us-
ing chest x-rays (CXRs) on a clinical site cohort collected from the
Stony Brook University Hospital. More specifically, we study the
impact of different quantized severity encoding schemes, different
granularity in the severity encoding, as well as compare quantized
encoding vs. continuous encoding vs. hybrid centroid weighted en-
coding.

1 Introduction

During the on-going Coronavirus Disease 2019 (COVID-19) pan-
demic, caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), significant focus has gone into exploring the efficacy
of different technology advances for aiding clinicians in combating
the disease. One particular area of interest in this technological
exploration involves exploring the efficacy of machine learning tech-
niques such as deep learning to aid clinicians in the clinical decision
support process. This is of particular importance given the signifi-
cant burden on clinicians, radiologists, and healthcare workers due
to the surge in patient intake, and the potential for machine learning
to reduce that burden.

Significant progress and advancements have been made in
the area of deep learning-driven COVID-19 detection using dif-
ferent imaging modalities such as chest x-rays (CXR) [1], com-
puted tomography (CT) scans [2], and point-of-care ultrasound
(POCUS) [3]. In addition to COVID-19 detection, it is also impor-
tant for clinicians to be able to identify the severity of infections in
SAR-CoV-2 positive patients to direct proper treatment and alloca-
tion of resources. One severity assessment strategy identified in
literature involves radiologists studying CXR images and assigning
severity scores based on: a) the density of opacities seen in the
lungs (opacity extent), and b) the geographic spread of such opac-
ities across the lungs (geographic extent) [4, 5]. In this system,
geographic extent and opacity extent are each scored on a scale
of 0-4 for each individual lung, and the scores for each metric are
summed across both lungs in an image, resulting in one score on a
scale of 0-8 for geographic extent and one for opacity extent.

One challenge with severity assessment, even with the help of
the aforementioned severity assessment strategies, is that it is very
difficulty for healthcare workers to interpret CXR images given the
subtleties of the condition at different severity levels. As such, cur-
rently such assessments often necessitate expert radiologists, who
are already burdened by the significant load caused by the pan-
demic. Therefore, computer-aided severity assessment powered by
deep learning can have significant benefits to aid clinicians and is

highly desired, with promising results shown in a number of recent
studies [6, 7].

An important design consideration in the building of deep neu-
ral networks for SARS-CoV-2 disease severity assessment lies in
the manner in which severity scores are encoded. The encoding
scheme used can have a significant impact on both the training be-
haviour of the neural network, as well as during inference time when
the neural network is making a prediction of lung disease severity. In
this study, we investigate the impact of different severity encoding
strategies on the severity stratification performance of COVID-19
patients using chest x-rays (CXRs) on a clinical site cohort collected
from the Stony Brook University Hospital.

2 Methodology

For this study, a clinical site cohort collected from the Stony Brook
University Hospital was used. Ethics clearance was received from
the Stony Brook University Institution Review Board Office of Re-
search Compliance research ethics board. The cohort consists
of CXR images from 2372 COVID-positive patient cases, split into
training, validation, and testing sets of 1518, 380, and 475 images,
respectively. Radiological scoring was performed by two board-
certified chest radiologists with 20+ years of experience (A.A. and
M.H.) and a 2nd-year radiology resident (B.S.). Each image was
scored for both geographic extent and opacity extent as previously
defined on a scale of 0.0 to 8.0, and the average score from the two
radiologists for each metric is used in this study. Figure 1 shows 4
example CXR images from the cohort, with patient cases exhibiting
different levels of geographic extent and opacity extent.

Exploration of the cohort, as shown in Figure 2, reveals that the
distributions vary significantly across the different severity scores
in question. The geographic extent scores are heavily left-skewed,
with the upper end of the 0-8 scale having a significantly higher den-
sity of patient cases, while the opacity extent scores are normally
distributed around the central value of 4 with very few patient cases
being found at either extreme of the scoring scale. This difference
in distribution suggests that being able to predict geographic extent
and opacity separately is important for clinical use cases. Addition-
ally, it should be noted that the number of scores falling on whole
numbers (e.g., 1.0, 2.0, etc.) is generally higher than scores falling
in between that occur when averaging two radiologist scores (e.g.
0.5, 1.5, 2.5, etc.) but the trends are still very clearly left-skewed
and normal respectively.

To conduct this study, we leveraged the COVID-Net CXR-2 deep
convolutional neural network architecture [8] as the backbone archi-
tecture for the various severity assessment deep neural networks
that were constructed for severity prediction based on the different
severity encoding strategies tested. COVID-Net CXR-2 was lever-
aged, as it was demonstrated empirically to provide strong discrim-
inative latent representations of SARS-CoV-2 infection characteris-
tics [8], and thus acts as a good foundation for exploring the efficacy
of different encoding strategies.

The following experiments were conducted to allow us to bet-
ter understand the different aspects of severity encoding. First,
we investigate the influence of one-hot quantized severity encod-
ing and integer quantized severity encoding on categorical severity
prediction performance. In this experiment, we leveraged a three-
level quantization encoding scheme, where severity scores from 0-8
were quantized into three levels: 0-3, 3-6, and 6-8.

Second, we investigate the impact of quantization level granu-
larity on categorical severity prediction performance when leverag-



Fig. 1: Example CXR images from the Stony Brook cohort; a) low
opacity density and geographic extent, b) higher geographic extent
than opacity density, c) higher opacity density than geographic ex-
tent, and d) high geographic extent and high opacity density.
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Fig. 2: Distribution of geographic extent and opacity extent scores
averaged across the radiologists.
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ing quantized severity encoding. This was accomplished by varying
the quantization levels used in the quantized encoding ranging from
three-level encoding to five-level encoding.

Third, we investigate the impact of distribution-driven loss
weighting during training on categorical severity prediction perfor-
mance using quantized severity encoding. The weights were de-
termined based on the data distribution for each quantized severity
level using Eq. 1:

weight = (1)
Ne * nj

Where n is the total amount of patient cases in the training

dataset, n. is the number of severity levels, and #; is the number

of patient cases for the j* level. Using the three-level quantized
encoding as an example, levels 0, 1, and 2 represent low, medium,
and high severity respectively. Sensitivity and accuracy were lever-
aged for quantitative evaluation for the first three experiments.
Fourth and finally, we compare the performance of continu-
ous severity encoding and quantized severity encoding schemes
for continuous severity prediction. More specifically, for quantized

severity encoding, we evaluated using different severity level granu-
larities ranging from three level encoding to five level encoding, with
the weighted average of the quantized severity centroids for each
quantized level, weighted by the softmax output for the correspond-
ing quantized level. This is compared to continuous severity encod-
ing, where the severity score is used directly as a continous value
and the model trained using a mean-squared error (MSE) loss.

3 Results and Discussion

3.1 Quantized Severity Encoding: One-Hot Encoding

vs. Integer Encoding

Table 1 compares the categorical severity prediction results for
deep convolutional neural networks trained using three-level, equal-
weighted one-hot quantized severity encoding and integer quan-
tized severity encoding for the geographic extent scores. It can
be observed that the accuracy of the network trained using one-
hot encoding was noticeably higher than that trained using integer
encoding. Therefore, for the rest of the experiments we focus on
one-hot encoding for quantized severity encoding comparisons.

Encoding | Sensitivity | Sensitivity | Sensitivity| Accuracy
(level 0) (level 1) (level 2)

One-Hot | 0.686 0.603 0.827 0.740

Integer 0.629 0.618 0.827 0.705

Table 1: Categorical geographic extent prediction performance for
one-hot and integer quantized severity encoding with quantized
level mappings of (0,1,2)->[0-3, 3-6, 6-8].

3.2 AQuantization Level Granularity

Table 2, Table 3, and Table 4 depict the categorical prediction per-
formance for geographic extent and opacity extent using three-level,
four-level, and five-level quantized severity encoding, respectively.

Metric Sensitivity (levels 0 - 2) Accuracy
Geo 0.686 0.603 0.827 0.740
Opc 0.598 0.745 0.644 0.631

Table 2: Categorical prediction performance for geographic and
opacity extent using three-level quantized severity encoding

Metric Sensitivity (levels 0 - 3) Accuracy
Geo 0.727 |0.420 |0.535 [0.760 |0.637
Opc 0.600 |0.804 |0.459 |0.422 |0.496

Table 3: Categorical prediction performance for geographic and
opacity extent using four-level quantized severity encoding

Metric Sensitivity (levels 0 - 4) Accuracy
Geo 0.667 [0.564 [0.278 [0.612 [0.600 |0.557
Opc 0.667 |0.556 |0.355 |0.500 |0.375 |0.482

Table 4: Categorical prediction performance for geographic and
opacity extent using five-level quantized severity encoding

It can be observed that as the granularity of the quantized sever-
ity encoding increased, the sensitivity and accuracy decreased.
More specifically, it was observed that there was a progressive in-
crease in false negatives being attributed to neighbouring severity
levels as granularity increased. That said, while coarser granularity
lead to higher accuracy and sensitivity, it may potentially be less in-
formative from a clinical interpretation perspective when using this
information to inform patient care and treatment planning. There-
fore, this trade-off between accuracy and actionability needs to be
discussed further with clinicians in order to understand which fac-
tors are most important to aid them in their workflows to guide future
work.



3.3 Distribution-driven Loss Weighting

Table 5 and Table 6 shows the categorical severity prediction perfor-
mance results of leveraging distribution-driven loss weighting during
training when using the three-level and four-level quantized severity
encoding, respectively.

Metric Sensitivity (levels 0 - 2) Accuracy
Geo 0.700 0.695 0.721 0.708
Opc 0.815 0.457 0.533 0.555

Table 5: Categorical predictive performance for geographic and
opacity extent using three-level quantized severity encoding us-
ing distribution-driven loss weighting of [1.809, 0.966, 0.707] and
[1.3764, 0.541, 2.345], respectively

Metric Sensitivity (levels 0 - 3) Accuracy
Geo 0.788 [0.362 [0.616 [0.648 |0.600
Opc 0.833 [0.642 [0.293 |0.578 |0.494

Table 6: Categorical predictive performance for geographic and
opacity extent using four-level quantized severity encoding using
distribution-driven loss weighting of [2.878, 1.376, 0.959, 0.530] and
[3.16, 0.641, 0.605, 2.111] respectively

The addition of distribution-driven loss weighting did not lead
to significant improvement in prediction performance. Underrep-
resented severity levels, which differed between metrics as shown
in Figure 2, showed better sensitivity, while more data-rich sever-
ity levels suffered a decrease in performance, which represents a
trade-off that needs to be discussed.

3.4 Continuous Severity Prediction Performance

Table 7 show the performance of continuous severity encoding and
quantized severity encoding schemes for continuous severity pre-
diction of geographic extent. Figure 3 displays the corresponding
results in scatter-plot form.

Model R?

Continuous encoding 0.676
Three-level quantized encoding | 0.654
Four-level quantized encoding | 0.670
Five-level quantized encoding | 0.648

Table 7: Continuous severity prediction performance for geographic
extent for continuous encoding and quantized encoding schemes

Table 8 show the performance of continuous severity encoding
and quantized severity encoding schemes for continuous severity
prediction of opacity extent. Figure 4 displays the corresponding
results in scatter-plot form.

Model R?

Continuous encoding 0.508
Three-level quantized encoding | 0.395
Four-level quantized encoding | 0.477
Five-level quantized encoding | 0.502

Table 8: Continuous severity prediction performance for opacity ex-
tent for continuous encoding and quantized encoding schemes

The results seen when comparing continuous severity predic-
tion performance for continuous encoding and quantized encoding
schemes are very interesting. Despite the quantized severity en-
coding schemes not explicitly using the continous severity score
directly via regression training, some of the quantized encoding
schemes led to similar performance as when continuous encoding
was leveraged directly.

Additionally, even though increasing quantization granularity in
the quantized severity encoding led to a decrease in accuracy for
categorical severity prediction, this trend was not observed in the
case of continuous severity prediction. This suggests there is merit
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Fig. 3: Geographic extent for different encoding schemes.
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Fig. 4: Opacity extent for different encoding schemes.

in examining if the increased encoding granularity could provide bet-
ter representation that could improve outcomes in the continuous
severity prediction scenario.
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