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Fig. 1: Affine Variational Autoencoder (AVAE) extends the conven-
tional VAE by introducing two affine layers, the first performing an
affine transform to the input, parameterized by α. This is encoded
and decoded by the VAE, and finally the second affine layer does
the inverse transform, producing the final output, x′.

Abstract

Is it be possible to disentangle an object’s orientation from its
shape? In this work we create compressed representations of an
object by disentangling its orientation and shape with a variational
autoencoder augmented with affine transform layers. Even when
trained on randomly oriented data, shape and orientation are dis-
entangled during training while the model learns to encode objects
at a fixed orientation. We show this process results in a more com-
pressed latent representation for 2d digits on the MNIST dataset,
and for 3d objects on the ModelNet dataset.

1 Introduction

There has been recent interest in learning representations of data
where factors of variation in the data are separated, called disen-
tangled representations [1], with the aim of increasing interpretabil-
ity and robustness. Unfortunately the general problem of learning
disentangled representations is impossible without assumptions [2],
similarly to how there is no classifier to rule them all [3]. Luckily just
as we can construct useful classifiers by making assumptions about
the structure of the world, we can also make assumptions to learn
disentangled representations.

We focus on the restricted problem of learning a disentangled
representation of objects’ orientation and shape. Previous works
have focused on closely related questions using a variety of ap-
proaches, including predicting the orientation of an object, both for
feed forward networks [4] and variational autoencoders (VAE) [5].

This work differs by learning disentanglement as side effect of
creating compressed representations. We extend previous work[6]
where the Affine Variational Autoencoder (AVAE) architecture was
introduced as a way to create more efficient representations of im-
ages. to the 3D case and show in addition to creating a more com-
pressed representation, these representations are also disentan-
gled. For both 2d images with the MNIST [7] dataset and 3d objects
with the ModelNet dataset [8] we show the AVAE can disentangle
object shape and pose.

1.1 Variational Autoencoders

Variational Autoencoders [9] are generative models where it is as-
sumed that the data, X = {x}n

i=1 are generated from latent variables,
z, with a prior distribution, pθ (z), as a centered isotropic multivariate
Gaussian. The likelihood, pθ (x|z) is assumed to be a multivariate
Gaussian, and the posterior, qφ (z|x) is assumed to be Gaussian with
diagonal covariance. The parameters of the likelihood and posterior
are represented with neural networks.

The VAE is trained to maximize likelihood of the data by maxi-
mizing the evidence lower bound (ELBO) shown in equation 1. This
entire network is differentiable, so can be trained using stochastic
gradient descent with this loss.

−LVAE = Ez∼qφ
[logpρ (x|z)]−KL(qφ (z|x)||pρ (z))] (1)

1.2 Disentangled Representations

Even though in general it is impossible to learn disentangled rep-
resentations without making some assumptions about the data [2],
there has been extensive work on problems using relatively weak
assumptions. These include learning disentangled representa-
tions where semantically relevant variables are explicit in the latent
space [10]. These are not limited to affine transforms, and include
variations such a lighting, color, or physical attributes like shape.
One approach is based on semi-supervised learning, where images
are generated based on both a latent variable and some relevant
factor of variation, which are assumed to be independent [11]. For
face generation, disentangling shape and appearance was tackled
through the synthesis of appearance on a template followed by a
deformation [12]. Other work divides the latent space into explicit
and implicit factors of variation, and training process of varying only
one factor while fixing the others is used to enforce the disentan-
gled latent space [13]. These methods all require supervised inputs,
where they are labeled based on some factor of variation.

1.3 Affine Transforms

Spatial Transformer Networks (STN) [4] aim to transform images to
some canonical orientation by applying an affine transform to the
input image using a differentiable three stage process. First, a (1)
Localization Network predicts affine transformation parameters.
Next, a (2) Sampling Grid of coordinates is used to associate each
point in the input to the output. Finally (3) Bilinear sampling is
used to apply the sampling grid.

Our work uses the Sampling Grid and Bilinear Sampling steps
for the affine transform layers, but instead of the localization process
the parameters are determined through an optimization process.

Other work [5] has also shown invertible transformations in
VAEs can be used to disentangle appearance and perspective but
used transformation parameters inferred from the object, instead of
the optimization process used in our work.

It is also possible to create networks that are equivariant to one
specific factor of variation, for example, constructing deep convo-
lutional neural networks that are equivariant to rotation and reflec-
tion [14]. While this is an effective method, it is limited to 90◦ rota-
tions, and adding more factors of variation increases the complexity
dramatically. Other work has focused on rotations specifically using
polar coordinates [15], but this is also limited to rotations only.

2 Model

2.1 Affine Variational Autoencoder

Similar to the VAE, we assume the data XXX = {xxx(i)}N
i=1 are generated

by an unobserved latent variable z. In this case we assume the prior
distribution of zzz = [z1,z2, ...,zk] can be written as:

p(zzz) = p(z1,z2, ...,zp,zp+1, ...,zl) = p(z1,z2, ...,zp)p(zp+1)...p(zl) (2)

We then relabel p(zzz) as p(z1,z2, ...,zp)p(α1)...p(αk). We con-
sider zzz to be latent variables representing shape, ααα to be those
representing orientation, and assume these are independent.

With a fixed orientation, yyy, this would further simplify the
problem because we could model the conditional distribution
p(z1,z2, ...,zp)p(α1 = y1)...p(αk = yk) = p(z1,z2, ...,zp). But this is lim-
ited to a single orientation, and we would like a model for all possible
orientations.

Assuming we have a standard VAE to model p(x,α = y) for the
distribution with fixed orientation, how could we make it generalize
to more orientations?

We would like a transform, τα that can transform an object xxx to
the correct orientation for our VAE, yyy, along with a corresponding



Fig. 2: 2d MNIST and 3d ModelNet object datasets, both shown
with rotation augmentation

inverse transform τ−1
α to transform the object back to its original ori-

entation. This is an affine transform, so both of these are straightfor-
ward to implement, and can be added to the standard VAE, resulting
the AVAE shown in figure 1. But how do we know the transform?

Because the VAE is trained by maximizing a lower bound on
the log-likelihood of the data, for an object xxx, we will use the loss
to approximate p(x). Assuming the VAE was trained on a distribu-
tion with fixed orientation yyy, samples at any other orientation should
have low p(x). To find the correct orientation, we should optimize
the transform parameters, α to minimize the VAE’s loss. Given a
VAE with encoder qφ , and decoder pρ , and the invertible transfor-
mation τα , we optimize α to maximize the likelihood of x under the
model:

α
⋆ = argmin

α

{
LVAE [τ

−1
α (pρ (qφ (τα (x))))]

}
(3)

Affine transforms can be made differentiable [4], so this can be
optimized using gradient descent. In practice, this optimization is
difficult and likely to be caught in a local optima, so random restarts
are required.

2.2 Disentangling Orientation and Shape

Given a dataset XXX = {xxx(i)}N
i=1 distributed randomly over affine trans-

forms, we use the observation that the conditional distribution of
zzz given a fixed orientation, p(z1,z2, ...,zp|α1 = y1, ...,αk = yk), is less
complex than than the full distribution to enable the disentanglement
of orientation and shape.

We train the AVAE on this dataset, but before each step of
SGD, the affine parameters are optimized using the above proce-
dure. Given a limited capacity model, the most efficient solution
is to encode the objects at a fixed orientation because this sim-
plifies the distribution to be modelled. The goal is that as training
progresses, the representation will be progressively more disentan-
gled as the model learns to encode at a fixed orientation and the
randomly oriented training data’s orientation is optimized towards
this orientation.

2.3 Design choices

For the MNIST dataset, we take the likelihood, pθ (x|z), to be an
isotropic Gaussian distribution with the variance fixed as 1. For the
ModelNet dataset, because we take the voxels as representing the
volume of an object, we assume each voxel should take values in
{0,1}. For this reason we use a Bernoulli distribution for the likeli-
hood. For optimization of the affine transform, we use 32 random
restarts. We select the 8 best parameters and perform 20 steps
of gradient descent on them using the Adam optimizer [16], finally
selecting the one with lowest loss.

3 Experimental Results

4 Experimental Results

4.1 Datasets

4.1.1 MNIST

The MNIST dataset is a set of grayscale numbers between 1 and 9,
sized 28 × 28. We do standard preprocessing by normalizing pixel
values and also pad the image with zeroes to a size of 40 × 40, to
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Fig. 3: (a): Reconstruction error of the VAE with and without rotation
augmentation. MSE is greater for the rotation augmented data with
any latent size, and the difference is most significant with limited
latent capacity.
(b): Average MSE of a VAE over the ModelNet validation set (sofa
class) for different latent sizes, compared to the same dataset with
rotation augmentation. For both classes, performance is lower on
rotation augmented data, indicating rotation augmented data has a
more complex distribution.

ensure there is no distortion under rotation or translation, shown in
figure 2(a).

4.1.2 ModelNet

The ModelNet dataset [8] is composed of 3d voxel images of com-
mon objects, shown in figure 2(b). For this work we use the 10 class
version of the dataset, and focus in particular on the sofa and chair
classes. The images are padded to 48×48×48 to allow for rotation
and translations without distortion.

4.2 Complexity of Rotation Augmented Objects

We compare the standard VAE on rotation augmented data to one
on data of a single orientation, and show for a given latent dimen-
sion loss is higher with the rotated data. This is to verify our hypoth-
esis that the rotation augmented data is a more complex distribution
so will require a higher capacity model.

For the MNIST dataset, in figure 3(a), we vary the latent capac-
ity for the VAE while comparing rotation augmented data to the sin-
gle orientation. We see that reconstruction error in terms of mean
squared error is greater for the rotation augmented data for any
given latent size. At smaller latent sizes this difference is most
pronounced, but as latent dimension increases performance con-
verges. This also fits with our assumption, as we would expect that
in theory a very high capacity model could achieve the same per-
formance on rotation and single orientation data, as latent capacity
is not a limiting factor.

For the ModelNet dataset, in figure 3(b) we vary the dimension
of the latent space used to encode the objects. We consistently see
the model for all rotations has higher mean squared error (MSE)
compared to the model for a single orientation, confirming the hy-
pothesis that the distribution of rotation augmented data is more
complex. This is true for all latent vector sizes, but becomes less
large as the latent size increases and model capacity is less of a
limitation.

We note that for both classes the difference between the rotation
augmented and the single orientation data is larger than what was
seen that on the MNIST dataset. The loss is twice as high when
using the latent size of 4 on the ModelNet dataset compared to
only 15% higher on MNIST. This is explains the larger performance
benefit seen using the AVAE on the ModelNet dataset. Because
rotations added greater complexity to ModelNet than MNIST, the
AVAE had greater room to improve performance.

4.3 More Efficient Representations with AVAE

We aim to show for a given latent size, the AVAE outperforms the
standard VAE in terms of reconstruction error, indicating a more
compressed latent representation. We intentionally use models with
small latent dimension to make the differences between the models
more clear.

In the AVAE the latent space is explicitly separated into the
affine transform parameters for affine transform layers and the
shape parameters from the VAE part of the model. Because of
this we have to add additional dimensions to the latent space of
the standard VAE model to take make the comparison equivalent.
For rotation augmented data we use a latent size of 7 which is com-
posed of a 6 dimensional VAE and the single rotation parameter, [r].
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Fig. 4: (a): Training of VAE vs. AVAE on the MNIST dataset with
rotation augmentation. AVAE takes longer to converge to a low loss
because it takes a few epochs for the model to learn encode digits
at a particular orientation
(b): Training of VAE vs. AVAE on the ModelNet dataset with the
sofa class, similarly to MNIST the AVAE first has higher loss before
it has learned to encode data at a particular orientation

For rotation & translation augmentation we use a size of 9, which is
composed of the 6 dimensional latent space, the rotation parameter
and translation parameters, [r, tx, ty].

In table 1, we see that the AVAE outperforms the standard VAE
for both rotation and rotation & translation augmentation by 12%
and 10% respectively. Basically, it is more efficient to explicitly use
a parameter for the rotation angle which is learned by the AVAE
rather than to leave it to the model to learn its own mapping.

Table 1: Improvement of AVAE over VAE on MNIST (MSE)

Augmentation Validation set (all classes)
Rotation 12%
Rotation & Translation 10%

Table 2: Improvement of AVAE over VAE on ModelNet (MSE)

Augmentation Sofa class Chair class
Rotation 30% 48%
Rotation & Translation 38% 18%

We also compare the AVAE to the standard VAE on a rotation
augmented version of the ModelNet dataset. Because the AVAE
uses 3 additional rotation [rx,ry,rz] parameters, we compare the
AVAE with 3 orientation parameters and 16 shape parameters to
a standard VAE with 19 dimensional latent space.

We also test this procedure using rotations and translations.
Here there is an additional 6 parameters, 3 for rotation and three
for translation, [rx,ry,rz, tx, ty, tz], so we compare the 16 dimensional
AVAE to a VAE with latent size 22. As shown in Table 2 for both
the sofa and chair classes the AVAE shows significant improvement
over the standard VAE. This is also true for augmented with both
rotation & translation, and here we see a significantly larger im-
provement compared to the MNIST dataset.

4.3.1 Disentanglement of Rotations During Training

We see evidence disentanglement during training by looking at the
loss as the model is trained, as shown in figure 4. We see the
standard VAE has a normal loss curve, where the loss quickly goes
downward for the first few epochs, and more slowly decreases after.
In contrast, the AVAE’s loss remains high for the first few epochs,
before it eventually decreases quickly to a lower value than the stan-
dard VAE.

This is because the AVAE is initially limited by having its’ latent
space divided between shape and orientation parameters. Initially
the rotation optimization process is useless because the model has
not learned to encode any orientation well, so the AVAE is forced to
encode all orientations with its more limited latent size. As the train-
ing progresses the model learns to encode only a single orientation
the loss drops quickly. By looking further into the distribution of ori-
entations during training for a single class on the MNIST dataset we
can see this disentanglement more clearly.

Using standard rotation augmentation and the normal training
process for a VAE, the rotations the model is trained on should be
uniformly distributed over [0◦,360◦]. But the AVAE optimizes rota-
tion before encoding, so this is no longer the case. Here we provide

Fig. 5: Evolution of rotations encoded by the AVAE during training.
Distribution of rotations of the "6" and "9" digits during training of
the AVAE at epochs 1, 5 and 30. As training progresses the AVAE
learns to encode most digits at the same orientation, but additionally
these numbers are encoded as 180◦ rotations of one another.

evidence that optimizing the affine transform during the training pro-
cess allows the AVAE to learn a more efficient representation by
changing the distribution of rotations it encodes digits at.

We look at how the distribution of angles digits are encoded at
evolves over the training process. At the first epoch of training the
model encodes each digit at a relatively uniform distribution over
rotations, as seen in the top graph of figure 5. The model hasn’t
learned to encode any rotation better than another, so the optimiza-
tion of rotation during training is useless, returning another random
distribution over rotations. This is what we would expect to see
when training a standard VAE.

As training progresses, shown in the lower graphs in figure 5,
the model becomes biased towards encoding digits at particular
orientations. It learns that it is better to encode only a subset of
the true distribution to better utilize the limited latent capacity of the
model. This is consistent with our earlier observation that it takes
a lower capacity model to encode a single rotation compared to all
possible orientations of images.

In figure 5, we are comparing the digits "6" and "9". Because
these digits have no rotational symmetries, they are encoded at a
single orientation, leading to the unimodal distribution seen for both
digits. But these digits are quite similar, nearly being 180◦ rotations
of one another. Because we train the AVAE to encode all classes of
MNIST, we see it learned a more efficient representation between
digits too, encoding the "6" and "9" digits at 180◦ rotations of one
another to simplify the data distribution.

5 Conclusion

In this work we proposed a method to enable learning more com-
pressed representations of of 2d images and 3d objects by disen-
tangling their orientation and shape. We used an optimization pro-
cess to find the best orientation to encode objects at by minimizing
the VAE’s loss, which can be seen as approximately maximizing the
likelihood of the object under our VAE. We showed this learns more
compressed representations compared to a standard VAE, and this
happens by disentangling orientation and shape. We evaluated this
on the 2d MNIST and 3d ModelNet datasets and showed that it is
useful on both types of data, but has larger benefits on the 3d data.
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