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Abstract

This work utilizes the new object detection framework, namely De-
tection using Transformers (DETR), to spot the characters in the
wild images, which offers simpler and robust end-to-end architec-
ture than the previous methods. The proposed framework leverages
an adaptive feature extraction to better focus on the position of char-
acter regions and a bounding box loss function that is more precise
in spotting characters with different scales and aspect ratios.

To evaluate our proposed architecture’s effect, we conduct
experiments on the ICDAR benchmark designed explicitly for
character-level text detection, namely the ICDAR13 dataset. Ex-
perimental results show that the proposed method outperforms the
state-of-the-art detectors when tested on the mentioned bench-
mark.

1 Introduction

Reading text from wild images is one of the challenging problems
in the computer vision community due to many variations in text
appearance, sizes, shapes, aspect ratios, font styles, perspective
distortion, and the complicated image background. For reading,
a text in a scene requires two stages: locate the text and then
recognize the character in the detected regions, which are called
scene text detection and scene text recognition. Some methods
combine these two stages, which leads to an end-to-end detection
and recognition (scene text spotting).

Inspired by deep-learning frameworks like Convolutional Neu-
ral Network (CNN) [1, 2] and Recurrent Neural Network (RNN)
[3], many end-to-end scene text detection and recognition meth-
ods [4–8] proposed. Some of these methods achieved superior
performance of text spotting at word-level in different benchmark
datasets [9–11]. However, these CNN and RNN based methods re-
quire several handcrafted components such as anchor generation,
non-maximum suppression (NMS) in regression-base methods, or
multiple processing stages (e.g. label generation) in segmentation-
based method to detect following by a rectification module before to
output the sequences of characters using RNN. Furthermore, Some
of these models, as described in [12, 13] show poor performance
when characters in the text are vertical or partially occluded.

As mentioned above, previous scene text spotting approaches
aim to output word instances whose primary components are char-
acters. Therefore, we aim to design a simple and end-to-end frame-
work that directly and precisely extracts the characters from the
given image and then combines the extracted characters to form
the final word. To achieve this goal, we utilize state-of-the-art
Transformer-based techniques that alleviate the issues of previous
CNN-based methods.

Transformer [14] is an attention-based pipeline that, after
achieving superior performance in sequence modelling and ma-
chine translation tasks [15], recently emerged in many computer
vision fields and achieved state-of-the-art results in many bench-
marks [16, 17]. Current state-of-the-art object detectors [18–22]
mainly inspired by self-attention mechanism in Transformers out-
performed prior Convolution Neural Networks (CNN) models [23].
For example, Detection using Transformer (DETR) [18], was the first
encoder-decoder Transformer-based detector proposed a new con-
cept for object detection framework. DETR uses a new technique
called object queries and task object detection as a set prediction
problem [23]. In contrast to other detectors, it removed the need
to design hand-designed components like anchor design and non-
maximum suppression (NMS) post-processing and directly detects
objects in the given image using so-called object queries. However,
DETR has low accuracy on small objects and slow convergence
during training [19, 23].

Many recent works proposed efforts to alleviate the issues men-
tioned for [18], for example, Deformable-DETR [19] aims to design
data-dependent sparse attention to address the small object detec-
tion problem of [18] and achieved higher precision performance and
fewer training epochs. Pyramid Vision Transformer (PVT) [20] is a

hierarchical pure Transformer backbone that achieved superior per-
formance in classification, object detection and segmentation tasks.
In order to decline the sequence length in the given input and pre-
serve the channel dimensions fixed, PVT utilizes a non-overlapping
patch partition followed by a linear patch embedding, respectively.
This backbone can be used accompanied by a Transformer frame-
work like [18] to predict dense objects efficiently.

Sparse R-CNN [21] proposed a sparse algorithm for object de-
tection without relying upon dense candidate regions. In order to
detect objects, it first generates a random sparse set of boxes and
then iteratively performs classifications and detection of the candi-
date boxes. In a recent work, Deformable Patch-based Transformer
(DPT) [22] presented DePatch that adaptively split images in a data-
driven way which address the problem of PVT [20] that uses the pre-
defined fixed-patched. DePatch forces the network to concentrate
on desired object regions and extract more semantic formations in
patches with different positions and scales. DPT achieved state-of-
the-art performance on image classification and object detection.

In this work, we only focus on character spotting by leverag-
ing the DTER [18] as our baseline detector. The contribution of
these works are: (1) We propose a new Transformer based model
based on [18] by modifying its feature extraction backbone and pre-
diction head by leveraging a robust bounding box loss function. (2)
We compare state-of-the-art transformer-based methods on spot-
ting the characters of the wild images with our proposed architec-
ture. (3) We provide quantitative and qualitative results to show the
performance of our proposed model.

2 Methodology

Figure 1 shows the proposed architecture. The framework of our
proposed method mostly follows the encoder-decoder detector form
[18]. The network first adaptively extracts image features using a
DPT-Small [22] backbone from different small patches; The result-
ing feature set is passed to a transformer encoder. For decoding,
a fixed set of learned embeddings called object queries are passed
through a transformer decoder. The feature vectors tests obtained
are fed to shared fully connected layers that directly predict each
query’s class and bounding box set. The Bipartite matching loss
is used for training the network, which leverages the Hungarian
matching algorithm [25] for comparing and establishing a one-to-
one mapping between N queries and N ground-truths [18]. The
prediction head outputs rectangular bounding boxes b = [x,y,w,h]⊤
can encase the character region by simplifying defining (x,y) as the
bounding box’s center point coordinates, and w,h representing the
box’s width and height respectively. To train the network, we also
modify the prediction head, along with the loss and matching func-
tions as described in below.

Loss function: The bounding box loss function of [18] uses a lin-
ear combination of ℓ1 and GIoU loss. Let b̂i and b j denote the ith

predicted and jth ground truth bounding boxes, respectively, then
we define our loss function as:

Lbox(b̂i,b j) = λ1Lreg(b̂i,b j)+λ2Lα−GIoU(b̂i,b j) (1)

where λ1 and λ2 ∈ R are hyper-parameters, and Lreg(·) and
Lα−GIoU(·) are the rectangular bounding box loss functions based
on regression and α−GIoU. The α−GIoU is defined as [26]:

Lα-GIoU = 1− IoUα +(
|C \ (B∪Bgt)|

|C|
)α , (2)

where Lα-IoU = 1− IoUα , C denotes the smallest convex shape en-
closing bi and b̂i. In our experiments, the α = 3 showed better per-
formance.

For regression, we use the Smooth-ln based Regression Loss
as in [24]. The regression loss is then defined as:

Lreg(b̂i,b j) = (|b̂i −b j|+1) ln(|b̂i −b j|+1)−|b̂i −b j| (3)

where | · | demonstrates the absolute operator.
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Fig. 1: The proposed end-to-end character-level text spotting framework, modified from [24].

3 Experimental Results

In this section, we first compare our proposed method with state-of-
the-art Transformer-based detectors and then present some quali-
tative results to show the model’s performance. Finally, we provide
an ablation study to investigate the effect of the different compo-
nents in the proposed pipeline.

Implementation details: We adopt the DETR [19] architecture as
our main framework with a DPT-small [2] backbone for feature ex-
traction. The number of object queries are set to 300 and AdamW
[27] optimizer is used to optimize the parameters of the model. We
use horizontal flip and and resize the images similar to [18] for
augmentation. We first pre-train our proposed model and meth-
ods in comparison on 100k images of Synth-text [28] with character
level annotations for 8 epochs and then fine-tuned on the ICDAR13
dataset to ensure the training converges. We train our model with a
batch size of 2 per GPU using 4 Tesla V100 GPUs and a learning
rate (LR) of 1×10−4.

Datasets: The ICDAR13 dataset [29] is the only benchmarks that
includes both word-level and character-level annotations using rect-
angular boxes containing 229 and 233 images for training and test-
ing. Most of the text instances of this dataset are horizontal and
high-resolution. Since ICDAR13 is the only well-known benchmark
dataset that contains character-level annotations, we conduct our
experiment on this dataset. However, we provide some qualitative
sample results in section 3.2 on other arbitrary-shape text datasets
including Total-Text [10] and CTW-1500 [11] to better show the per-
formance of our model.

Evaluation metric: To our best knowledge, this is the first work
that focuses on character spotting; there is no evaluation metric to
measure the performances of the predicted characters in the scene
text detection community. Nevertheless, we can task characters
as different classes of objects; Thus, we can use mean average
precision (AP) as our evaluation metric adopted as a standard in
many recent object detection algorithms to spot 36 alphanumerical
(10 digits + 26 capital) characters directly in the images.

3.1 Quantitative Results

To evaluate the performance of the proposed method, We compare
it with DETR [18], PVT [20], Sparce R-CNN [21], and DPT [22]. The
quantitative comparison is shown in Table 1. Our proposed method
outperformed the state-of-the-art detectors by a large margin,∼ 4%
compare to the best detector in AP performance. It also performed
better in the spotting of small, medium, and large characters. The
baseline DETR [18] not only performed poorly on small and large
characters, but it also required more training epochs to converge
on the ICDAR13 dataset. On the other hand, with a lower number
of training iterations, PVT significantly outperforms DETR by ∼ 8%.
While Sparce-RCNN outperformed the PVT in overall AP by ∼ 2% in
reading better of medium and large characters, it showed poor per-
formance in spotting small characters. In contrast, DPT performed
better in small character spotting and achieved the second-best per-
formance in terms of AP.

3.2 Qualitative Results

Figure 3 shows the qualitative results on some challenging sample
images. As seen, the proposed model is robust in spotting small,
medium, large and even complex fonts characters compared to the
baseline model. It also performed well on spotting of partially oc-
cluded and oriented characters as shown in Figure 3(b) and Figure
3(c), respectively.

Fig. 2: Qualitative results of the proposed method in out of distri-
bution samples from Total-text [10] and CTW-1500 [11] datasets.
The proposed method detects characters in arbitrary-shape text in-
stances.

To see the generalization ability of the proposed method, we
also provided some qualitative result of arbitrary-shape text of Total-
text [10] and CTW-1500 [11] datasets, where model was agnostic
to the text instance of them. As shown in Figure 2 the model was
able to detect and recognize precisely the characters in various text
instances of the given images.

Ablation study: To assess the added value of the various compo-
nents in our model, we performed an extensive ablation study on
ICDAR13 datasets. Table 2 summarizes the obtained results.

We started the experiments by baseline model that uses a
ResNet-50 backbone for feature extraction, GIoU+ℓ1 loss for bound-
ing box regression; the model achieved an AP performance of
0.41. We then replaced the backbone with PVT-small yielding an
AP=0.46, which outperformed the baseline; We found that using
DPT-small as backbone led to further performance boost compared
to PVT-small backbone. We finally replaced the baseline bound-
ing box losses with α−GIoU+Smooth-ln loss and achieved the best
performance on the mentioned dataset by improving ∼ 4%.

4 Conclusion
This paper has leveraged a new end-to-end Transformer-based ar-
chitecture for character spotting in the wild images. The proposed
method has leveraged Deformable-Patch (DPT) as a feature extrac-
tion backbone and a bounding box loss function for reading charac-
ters with different sizes, scales, and aspect ratios in the wild images.
We experimented with ICDAR benchmark dataset to compare our
proposed method’s performance with that of the recent state-of-the-
art object detection approaches. Experimental results have shown
that the proposed method outperforms the state-of-the-art methods,
including recent Transformer based detectors, in terms of mean av-
erage precision. Our end-to-end robust character level detector is
an essential step towards the word or text-line detection, which re-
mains part of our future work. As future work, we are interested in
addressing the occluded text challenge and geometric distortions
by improving the proposed method’s scheme.



Table 1: Comparing the character spotting performance of our proposed methods with state-of-the-art detectors [18, 20–22] on ICDAR13
[29] dataset.The best performance is highlighted in bold.

Model-Name AP AP50 AP75 APs APm APl epochs
DETR [18] 0.49 0.78 0.57 0.48 0.58 0.41 700
PVT [20] 0.57 0.83 0.68 0.55 0.67 0.53 200
Sparse R-CNN [21] 0.59 0.80 0.70 0.49 0.69 0.65 200
DPT [22] 0.62 0.86 0.76 0.61 0.68 0.58 200
Proposed 0.66 0.89 0.78 0.64 0.72 0.63 200

Baseline
Proposed

(a) Different font styles (b) Partially occlusion (c) Oriented

Fig. 3: Qualitative comparison of the baseline [18] and proposed methods on some of the challenging images of ICDAR13 dataset. Best
viewed when zoomed.

Table 2: Ablation study of our model using different components.
The models trained only on the train set of ICDAR13 and no syn-
thetic images used for pre-training. The best performance is shown
in bold.

model backbone bounding box loss AP
Baseline ResNet50 GIoU+ℓ1 0.41
Baseline-2 PVT-Small GIoU+ℓ1 0.46
Baseline-3 DPT-Small GIoU+ℓ1 0.48
Proposed DPT-Small α−GIoU+Smooth-ln 0.52
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