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Abstract

This paper describes the problem formulation, data set generation,
and initial testing of image recognition methods for applications in
Computer Numerical Control (CNC) machine vision. Synthetic part
images are used to train a simple Convolutional Neural Network
(CNN) for feature classification. Where potentially infinite parts
could be created, but the manufacturing of a great number of differ-
ent parts is itself expensive, synthetically generated images present
an opportunity to train an image classifier on a great span of possi-
ble features. This paper contributes a definition of synthetic training
data for a simple CNC feature understanding, and explores simple
CNN methods on real and synthetic feature data.

1 Introduction

Numerical control machines (NC machines, also commonly referred
to as CNC or computer numerical control machines) are designed
to operate without any closed-loop feedback. Provided a list of com-
mands, CNCs blindly follow these instructions line-by-line until they
reach the end of a program file unless interrupted. While this de-
sign has provided automation opportunities across a great number
of manufacturing applications such as milling or turning, this simplis-
tic approach neglects the challenges of interacting with real objects
in the physical world.

Many human hours must be spent generating tool paths which
produce the desired components while accounting for fixture points
and load on the tool. Even more hours are required to observe
the instructions as executed to safeguard against any mistakes that
may cause defects rendering parts useless, or worse, long term
damage to high-capital CNC components. Advances in computing
technology and artificial intelligence have encouraged investigation
into “closing the loop” [1] and developing opportunities to provide
the CNC machine knowledge of the work space and the part that is
being created. An ideal system would have a knowledge not only
of the movements it must take to create a specific part, but of the
individual features (holes, pockets, extruded sections) that make up
the part. In this way, the machine would be able to make reactive
and intelligent decisions about manufacturing, offloading much of
the tedious aspects of CNC part production.

Camera and vision systems in manufacturing have become
more commonplace for inspection duties. Object recognition and
deep learning tasks of computer vision systems see present appli-
cations in catching part defects on manufacturing lines, [2, 3]. Com-
putational intelligence often struggles with developing appropriate
models for complex systems due to limited data availability. For
CNC manufacturing, CNC machine hours and defect example gen-
eration could be severely costly on material and tool damage. This
paper seeks to investigate the performance of part feature recog-
nition of real part features by systems trained on easily-generated
synthetic image data sets. This paper contributes a definition of
synthetic training data for CNC feature representation, and evalu-
ates a simple CNN method on real and synthetic feature data.

2 Problem Formulation

In order to focus on a subset of this overall problem of CNC part
understanding, CNC vision understanding is explored in terms of
feature shape identification. For the applications of industry and
manufacturers, desirable methods:

• Locate and identify object features
• Require no or little specialized expertise
• Require no or few tasks for implementation

Convolutional Neural Network classifying solutions are able to per-
form complex object recognition tasks without the need for special-
ized image preprocessing tasks. However, neural networks in gen-

Fig. 1: Sample set of synthetic training images (left) and real training
images (right). Images have varying light conditions, and camera
angles.

eral require training procedures which may be laborious, especially
in sample data generation. Synthetic data generation is proposed
to overcome this requirement.

Convolutional Neural Networks Image analysis informs that
shape detection is a local image problem. As CNC features im-
ply spatial relationships in images; convolutional models, effective
in investigating spatial correlation, [4, 5], are appropriate. Neural
network classification techniques are employed to develop a sys-
tem that is able to model unknown correlations between input and
classification. As object and feature recognition models expand,
implementing a simple model or employing the use of a well-known
machine learning model becomes more accessible to industrial ap-
plications. As common for manufacturing problems, [2, 3], this prob-
lem assumes a simple CNN architecture described in Section 3.1,
with tuneable hyper parameters (e.g. filter size) ReLu activation on
the convolutional layers, and softmax activation on the fully con-
nected classification layer [6, 7].

Synthetic Data Training Machine learning networks are typi-
cally trained on hundreds or thousands of images in order to pro-
duce a generalized model. Since the proposed ML model will be
used to identify the location and shape of features on physical ma-
chined parts, an appropriate training dataset would typically include
photos of hundreds or thousands of different physical machined
parts. Unfortunately it is often cost prohibitive for manufacturers
and researchers to create such a large dataset due to a combina-
tion of time and material costs. Instead, this work investigates the
efficacy of training an ML model using synthetic data. Taking this
approach requires far fewer physical machined parts, as they will
only be used for validation of the network. Data sets are developed
as specified in Section 3.2, where an example of produced data can
be seen in Figure 1. Real data validation components will be of the
same limited composition as the synthetically generated images.

This paper explores whether synthetically generated part im-
ages are enough to train a CNN feature recognition system to be
employed on real part data.

3 Procedure

This section discusses the simple implementation of a CNN for this
image classification problem. The generation of the synthetic data



Table 1: Final Composition Summary of Simple CNN

Layer Name Size Activation Pooling

1 Input 150x150x1 No No
2 Convolution 1 150x150x16 ReLu Yes
3 Convolution 2 75x75x16 ReLu Yes
4 Convolution 3 37x37x32 ReLu No
5 Fully Connected 4x43808 Softmax No
6 Output 1x4 No No

Fig. 2: Diagram of the composition of the simple CNN implemented.
Convolutional layers are grouped with normalization and activation
layers. Pooling layers are placed after first and second convolutional
layers. Classification layers are composed of fully connected layers
with softmax activation and cross-entropy loss for classification.

is discussed, and results of synthetic training are explored. Real
data testing results of the synthetically trained CNN is explored.

3.1 Model Construction

CNNs are structured by a series of network layers. A set of convo-
lutional layers with associated activation and pooling layers perform
image processing tasks. Then, the image as processed is flattened
and received as a input vector to a regular neural network which
then models the classification, [6, 7].

Examples of simple CNNs were explored [2, 3, 6], and a 3 Con-
volutional Layer model was chosen according to image and feature
size. A diagram of the selected model can be seen in Figure 2.
Hyperparameters such as convolution filter size, number of layer
nodes, epoch, learning rate, and batch size were trialed and se-
lected for performance. ReLU activation layers were employed with
normalization on every convolutional layer. Cross-entropy loss was
used for classification. Table 1 describes the developed CNN layer
and training parameters, while Table 2 describes the learning per-
formance on the synthetic data.

3.2 Data Generation

Typical examples of machining features include through holes, blind
holes, pockets, or shoulders. The distinction between many of these
examples may be unclear even to a human machinist; for example,
a blind hole could be considered a small pocket, or a pocket may
be a hole that has been broached into a non-circular shape. As
the focus of this paper is to evaluate the effectiveness of training
and testing an ML model using synthetic and real-world images,
respectively, a simplified set of "machining features" were created
which are more distinct.

A small set of shapes (squares, circles, triangles and hexagons)
were selected. For each training sample, a 1 unit x 1 unit cube is
embossed with one of these shapes 0.1 units deep into the top face.
These shapes are of random size within a predetermined range (as
outlined in Table 2), and are placed no closer than 0.05 units from
the edge of the cube. Using Matlab, the cube is then rendered with
the camera facing between 60◦ and 90◦ below the horizontal, and
rotated between -22.5◦ and 22.5◦, with the cube in the center of the
field of view. Finally, the cube is lit from a random direction in the
top hemisphere. An 8-bit greyscale image of the cube is captured

Table 2: Learning Performance of CNN on Synthetic Data Testing
and Validation Over Varying Feature Radii

Trial Epochs Learning
Rate

Train
Accuracy
(Synth)

Test
Accuracy
(Synth)

Feature
Radii

A 100 0.002 99% 74.9% 0.05-0.3
B 100 0.002 100% 89.8% 0.1-0.3

at a resolution of 300 pixels x 300 pixels, and saved along with the
random feature data that was used to produce it.

3.3 Results

Two synthetic data training trials were completed for the generated
CNN. These trials are captured in Table 2. Relatively low perfor-
mance was noticed on the synthetic test accuracy of Trial A. After
the minimum feature radius was increased to 0.1 units, test accu-
racy on synthetic data increased by 14.9%.

Preliminary validation of the model produced in Trial B was con-
ducted with two machined parts. The first machined part was a
48mm cube with a 12.7mm circular blind hole machined to a depth
of 4.8mm below the top surface. The second machined part was a
48mm cube with a 24mm x 24mm square hole machined to a depth
of 4.8mm. 43 images of both parts were takes (22 images of the
circular part and 21 images of the square part). Similar to the syn-
thetic data generated, these images were taken in different lighting
conditions and from different angles. Overall, the network was able
to identify 19 of the 43 images correctly. A subset of the images
were taken in optimal lighting conditions. Of these, the network was
able to identify approximately 50% of the samples correctly.

4 Conclusions and Future Work

CNC machine knowledge can provide a myriad of benefits, includ-
ing pathway correction and adaptation, a real time understanding of
machine tolerances, and avoidance of human error that can dam-
age expensive tooling and parts. This research investigated feature
identification in CNC part manufacturing as an image recognition
problem. This involved constructing a synthetic data set and devel-
oping a simple CNN structure. The synthetic data was used to train
and validate the CNN, with the aim to use the CNN functionally on
real images of parts.

At lower minimum feature radius, the synthetic test accuracy of
the network was significantly lower. Fine detail loss over several
filtering and pooling operations is likely responsible for poor perfor-
mance of small feature radii classification.

Based on limited testing of real world images, it is clear that
more work needs to be done to improve the classification accuracy
of the model. Certain physical features, such as machining marks
on the surface of the manufactured parts, were not included in the
synthetic training data. Future work may include investigating tex-
ture mapping or surface normal reflection mapping to improve the
realism of the training data.

To improve accuracy further, it may also be beneficial to train
a network with both synthetic and any available real-world images.
Synthetic data could be used to produce an initial set of network
weights, with real data then used to further tune the network to ac-
commodate aspects of real parts that are difficult to simulate. This
technique would still have a reduced real world training image re-
quirement compared to training with only real world images.

Future work may also include the expansion of the feature
recognition problem into further image recognition tasks including
expanded feature classes, and other prediction output including lo-
cating the position of the shape and measuring feature radii within
the image.
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