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Abstract

Integral to the treatment of patients suffering from severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is assessment
of the severity of the illness, allowing clinicians to more effectively
apply care and devise a plan of treatment. Since the workload of
clinicians is high at the best of times, let alone during a global pan-
demic, much work has gone into creating computer-aided clinical
decision support systems, often enabled by deep learning tools.
Previous work has investigated the ability to identify COVID-19 posi-
tive patients from point-of-care ultrasound (POCUS) images, but de-
cision support systems for POCUS-based COVID-19 severity strat-
ification have not yet been presented. In this study, we examine
the feasibility of using a deep learning neural network architecture
to classify POCUS images from an open source repository into dis-
tinct severity levels based on annotations from an experienced doc-
tor of emergency medicine, hopefully leading to the implementation
of such a system into a real-world clinical workflow.
1 Introduction

During the course of the COVID-19 pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many at-
tempts have been made to apply technology, and in particular deep
learning-based Machine Learning (ML), to aid clinicians in diagnos-
ing and treating the disease. Much work has gone into analyzing
chest x-ray (CXR) [1] and computed tomography (CT) [2] imaging
modalities, but recent work has begun to expand into ultrasound
(US) imaging as well [3]. In particular, point-of-care ultrasound
(POCUS) has started to create significant impact in care for COVID-
19, largely due to its ease-of-use, cost, and lack of ionizing radiation
in comparison to the other aforementioned imaging modalities, al-
lowing it to be of use in lower resource contexts [4, 5].

One challenge encountered when dealing with POCUS images
in the context of creating ML tools is the quality of the data, and
in particular confidence in the consistency of the labels. Unlike the
cases of CXR and CT, which often have large datasets released by
administrative bodies where not only are images generally collected
using consistent protocols, the publicly available dataset used in re-
cent work [3], COVIDx-US [6], is based off of a collection of smaller
datasets from research publications, releases from POCUS device
companies, and radiology education sites brought together into a
single location.

A recent update to the COVIDx-US dataset added a new set
of labels for the entirety of the data available through that source
that simultaneously adds more detail to the dataset by providing
severity scores, instead of simple COVID-positive and -negative la-
belling, and ensures that the labels are applied to all cases via a
consistent, structured method [6]. Severity assessment is critical to
the workflow of clinicians, enabling proper allocation of resources
and development of effective treatment plans, and previous work
has shown the effectiveness of deep learning-based ML systems in
performing such assessment via severity level classification in CXR
images [7, 8].

The labelling was performed based on a COVID-19 Lung Ul-
trasound Severity (LUSS) method defined in literature [9]. The de-
scribed LUSS score has a range of 0 to 3, with 0 corresponding
to "normal" and 1-3 being various levels of severity of artifacts ob-
served, and is based on signs and markers seen in the lung ultra-
sound images of infected patients, such as breaking of the pleural
line, the presence and extent of consolidations in the lung tissue
(darkened regions in the images) and general whitening of lung tis-
sue seen below the pleural line [9]. Our contributing clinician (A.F.)
who provided the scoring is an Assistant Professor in the depart-
ment of Emergency Medicine and the ultrasound co-director for un-
dergraduate medical students at McGill University. He is practicing
Emergency Medicine full-time at Saint Mary’s Hospital in Montreal.

Examples of cases corresponding to each LUSS score from the
COVIDx-US dataset are presented in Figure 1.

Fig. 1: Examples of lung POCUS images from the COVIDx-US
dataset for different LUSS scores [6]. From top left, the samples
shown represent examples with LUSS scores of a) 0, normal, b) 1,
low severity, c) 2, medium severity, and d) 3, high severity.

This study will examine the feasibility of using deep learning
neural networks to analyze lung POCUS images to perform clas-
sification of patient into LUSS severity scores. The overall perfor-
mance of the system will be evaluated quantitatively and qualita-
tively to investigate whether such a decision support system could
eventually be implemented to aid clinicians in decision making, and
the specific successes and challenges of the system will be inter-
preted in the context of the problem space.

2 Methodology

As described previously, to examine the performance of deep learn-
ing neural networks to classify lung POCUS images into LUSS
scores, the most updated dataset of COVIDx-US was used [6].
To ensure consistency in the dataset, cases without a valid LUSS
score assigned to them (N/A) were discarded, as were cases of
neck or cardiac ultrasound images and those captured with lin-
ear ultrasound probes. This data processing resulted in 133 lung
POCUS videos captured with a convex probe with a valid LUSS
score, which contained 17,578 image frames after processing done
following methods from COVIDx-US. These images were split into
training, validation, and test splits of 11,337, 3,051, and 3,190 im-
ages respectively, ensuring that videos from the same patients were
kept in the same splits to avoid data leakage. The distributions
of LUSS scores across both valid videos and valid images, since
the number of images usable from each video is inconsistent, are
shown in Figure 2.

In this preliminary investigation, we leveraged a residual deep
neural network architecture [10] to train a model to classify images
into one of the four LUSS score classes (0-3). The model was



Fig. 2: The distribution of the number of videos (left) and images
(right) corresponding to the 4 classes of LUSS scores. While sepa-
rating the videos into individual usable images does slightly change
the relative proportions in each class, the general trend is consis-
tent, with classes 0 (no abnormalities seen) and 2 (medium severity)
containing more samples than classes 1 and 3 (low and high sever-
ity respectively).

trained for 20 epochs following an exponential learning rate decay
scheme with an initial learning rate of 5×10−4 using the Adam op-
timizer.

3 Results and Discussion

Results from the currently best performing model are as follows.
Figure 3 contains the confusion matrix of the results from the the
classification model on the testing set. Table 1 presents sensitivity
and specificity metrics for the four LUSS classes as well as total
accuracy across the entire test set.

Fig. 3: Confusion matrix for results of LUSS score classification
model on the testing set, presented normalized based on the num-
ber of images in each class of the ground truth labels.

At the current point in this study, the results are certainly promis-
ing. Since there are no other studies using the COVIDx-US dataset
for severity classification, the overall accuracy score of 0.692 can-
not be placed in a wider context, but it is supportive of the feasibility
of the system to place images into the correct severity classes, yet
leaves plenty of room for improvement.

Each of the 4 classes has a sensitivity of at least 0.580, sug-
gesting that this neural network architecture is able to find patterns

Metric LUSS 0 LUSS 1 LUSS 2 LUSS 3
Sensitivity 1.000 0.580 0.606 0.696
Specificity 0.735 1.000 0.470 0.907
Accuracy 0.692

Table 1: Sensitivity, specificity, and overall accuracy of LUSS scores
for the trained classification model.

that can differentiate the classes from one another. Class 0 (nor-
mal) in fact has no misclassified samples, although the ability to
perform well in this case in not unexpected, as previous work did
show that neural networks can be successful at identifying COVID-
19 and non-COVID-19 images [3]. However, class 0 does only
have a specificity of 0.735, showing that many samples (mostly from
class 2) are being falsely identified as class 0, thus work will need
to be done to alleviate that issue.

It is also not too surprising that most of the errors seen in the
confusion matrix in Figure 3 are between the various levels of LUSS
scores that correspond to different severity classes. In these cases,
the images were labeled based on the contributing clinician’s inter-
pretation of the patient case corresponding to the labeling protocol’s
description of signs and markers, and it is most likely the scale or
extent of the signs that differentiate the cases themselves. The dif-
ferences in the images will likely be a lot less easily identified, and
the model at this stage in experimentation is likely to not be able to
make those decisions well. In particular, the model seems to make
many errors corresponding to class 2, both in terms of false nega-
tives and false positives, leading to the lowest specificity of any of
the classes at 0.470. Future work will focus on reinforcing the suc-
cesses of the neural network model in classifying the normal, class
0, cases, while reducing the errors seen within the COVID-positive
classes with scores 1-3.

At the point of this study, experimentation has not yet been per-
formed on the architecture of the neural network itself, and tailoring
neural networks to tasks in such a manner has been shown to be
critical for increased performance in similar tasks in the past [3, 7].
Thus, such an exploration is the next area for work on this task, and
is expected to significantly help the classification ability of future
neural networks that will be built.

4 Conclusion

Initial performance of this deep learning neural network in identi-
fying various COVID-19 severity levels from lung POCUS images
are promising, especially when examining specifically its ability to
distinguish between COVID-19 and non-COVID-19 cases. How-
ever, while still effective, the neural network certainly encounters
challenges when tasked with separating the various severity levels
of COVID-positive cases from each other. This suggests that fur-
ther work, especially in terms of investigating a variety of network
architectures beyond that used in this study, could improve the per-
formance of the deep learning neural network architecture to lev-
els that could assist clinicians in their work diagnosing and treating
COVID-19 during the rest of the pandemic. Additionally, we hope
that this work can act as a proof-of-concept that could lead to an
acceleration of other work using machine learning in tandem with
POCUS imaging in further clinical contexts.
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