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Abstract

Place Recognition Systems provide the ability for vision systems to
detect places they visit. Central to this is the use of image descrip-
tors to summarize the visible scene in an image, for future compar-
ison in the future. Current applications of VPR including self driving
vehicles are pushing the limit of existing techniques, requiring long
operational lives that cover large and diverse geographical areas.
This introduces challenging new changes to scenes, like illumina-
tion due to the time of day/night, or seasonal variations. Neural-
network-based image descriptors provide promising improvements
in this area but a trade-off has emerged: training for robustness ap-
pearance changes or viewpoint changes between visits to a scene.
One approach is in the use of synthetic views, which decouple the
two problems by allowing the difference in viewpoint to be artifi-
cially corrected. Here we evaluate a promising method (Neural Ra-
diance Fields, or NeRF) when trained on a series of images cap-
tured from a trajectory representative of real-world application in
VPR. We compare the frames produced to ground truth frames with
the same viewpoint to gauge the performance that can be expected
and the potential issues of applying this technique. Overall we find
promising examples where the quality of the synthetic frames may
allow for use in VPR. We also suggest future work, improving on the
quality and reliability of the views obtained.

1 Introduction

Critical to a variety of navigation tasks is the problem of visual place
recognition or VPR. This is the ability for a vision system to detect
when it revisits a place which has been previously seen. A common
example is loop-closure in SLAM (Simultaneous Localization and
Mapping) systems which are a staple of mobile robotics.

Core to the operating principles of VPR is the description of
scenes which are visited, for storage and future comparison. These
descriptions must be robust to all of the changes which a scene can
undergo, while still being able to differentiate it from others which
likewise may change. With self driving vehicles and other recent
applications which require long operational lives over large geo-
graphical areas new challenges are introduced. The longer lifespan
means that changes in illumination through the day or other envi-
ronmental factors must be tolerated, and some applications even
require robustness to seasonal appearance changes.

Techniques leveraging more powerful neural image descriptions
have shown promise in overcoming these challenges, however a
tension has emerged. Many of these descriptions are sensitive to
the large-scale structures in an image which can improve perfor-
mance when differentiating similar locations. However, this also
makes them sensitive to the viewpoint from which the image was
taken, which is not always guaranteed to be consistent. This is in
contrast to approaches like BoVW and VLAD [1] which focus on
image patches and local features. A compromise must be made
between training for invariance to appearance changes but also to
changes in viewpoint. [2]

One suggestion for addressing this problem has been to make
use of synthetic views. This allows for the creation of artificial im-
ages with an alternate viewpoint for comparison, in turn decoupling
the problems of viewpoint and appearance by solving them inde-
pendently. If a consistent viewpoint is presented to the descriptor,
focus can be placed on appearance changes. One demonstration
of this is by [3] through the use of RGBD scan data to produce al-
ternate views during verification of a match. However, [2] mention
[4] as a possible method of offline view synthesis which requires no
3D data. Instead only regular images and poses are needed, which
are already naturally generated in many mobile vision systems. This

would greatly easy the deployment of view synthesis techniques to
the wider world of VPR.

Here we describe the synthesis of alternate viewpoints using
Neural Radiance Fields using real trajectory data from a SLAM sys-
tem, operating on a common SLAM dataset. We train the model
on an initial traversal and upon revisiting the same location gener-
ate several synthetic views with the same pose as newly captured
frames. We compare these synthetic views with this ground truth to
provide an early examination of the suitability of NeRF to generating
synthetic frames in VPR. We highlight some of the difficulties en-
countered and provide some recommendations for how some may
be overcome.

In the organization of this paper we first give a brief survey of
various work to use synthetic views in easing the burden on visual
place recognition systems. We then describe the conditions of the
experiments undertaken and the factors which influenced their im-
plementation. Finally we present and discuss the results of our pre-
liminary investigation, as well as present promising avenues for im-
provement.

2 Background Review

2.1 Invariance of Various Description Methods

Core to VPR systems are the descriptor(s) used to describe scenes
captured by the system for later matching. As discussed by [2], [5],
and others, there are competing goals in the design of a VPR de-
scriptor to be robust to both changes in appearance (appearance
invariance, eg illumination or seasonal changes), and to the view-
point of the camera (viewpoint invariance).

Many past descriptors including BoVW [6], VLAD [1], and Fisher
vectors [7] process individual image features and patches, ignor-
ing the image’s spatial information. This lends them a compar-
atively high degree of viewpoint invariance. Recent approaches,
and especially those leveraging neural networks like HybridNet and
AMOSNet [8], have shown to be much more powerful descriptors
and more robust to illumination and appearance changes. The ro-
bustness over techniques like BoVW makes them very attractive but
is often accomplished by recording spatial information into the de-
scriptor which approaches like BoVW ignore. This is because large
scale elements of a scene are often reliable not to change over time,
though they are virtually guaranteed to be captured differently from
different viewpoints.

2.2 Use of Synthetic Views

Various methods in the past have been proposed to generate syn-
thetic views for VPR and related tasks. [3] re-project dense RGBD
data to generate alternate viewpoints during verification of a poten-
tial place recognition. [9] also produces synthetic views by gen-
erating a neural depth estimate and then applying a simple lateral
shift to pixels based on their depth. [10] make use of 3D data and
panoramas from Google Street View to increase the size of their
matching database. [11] render point clouds into synthetic views
for comparison with images, as no image data that corresponds to
the point cloud exists. The most notable difference between these
methods and NeRF is that NeRF can operate on simple images and
their poses, without requiring a depth map, scan data, 3D models,
or other extra 3D information. This greatly simplifies it’s deployment.

2.3 Neural Radiance Fields for View Synthesis

One of the most widely cited methods for view synthesis in gen-
eral synthetic view literature is Neural Radiance Fields or NeRF



[4]. It has spawned countless derivative works, for example Bundle-
Adjusted Radiance Fields or BARF [12] which uses bundle adjust-
ment to eliminate the need to relative pose in training images. [2]
suggest Neural Radiance Fields as one method that may be assis-
tive to the problem of viewpoint invariance in VPR. To our knowl-
edge we provide the first experimental examination of it’s suitability
for this purpose.

3 Methods

3.1 Experimental Preparation

To train a NeRF model [4], a series of images showing the scene
to be rendered are required, plus their relative poses. These are
then used during training to develop a spatial representation of the
scene from which synthetic views are rendered. With the goal of
training NeRF on realistic data available to a live system, the ORB-
SLAM3 [13] SLAM system was used to generate pose estimates for
sequences from the TUM VI [14] dataset. The sequences selected
are monocular, with inertial measurements available, which is a re-
alistic assumption for many mobile devices and robotic platforms
today. The specific NeRF implementation used was [15].

The collected poses were normalized by subtracting their av-
erage position, centering them on the origin. A scale factor was
also provided to NeRF to rescale the largest displacement to a
unit of 1.0. This normalization is a strongly encouraged technique
for NeRF to preserve training of fine details. [4] Every N frames
were taken from the set as consecutive frames are often similar an
contain redundant information, and dramatically increase training
time. Values of N of 2 and 4 were used for these experiments. The
512x512 images where also rescaled to one third their original size.
Training was typically run for a maximum of 150,000 to 200,000 iter-
ations as is common for NeRF models, though progress was mon-
itored every few thousand iterations. The graphics card used was
an RX 3090 and training times typically lasted 12+ hours.

In selecting segments of the TUM IV dataset’s available ses-
sions, the objective was to find portions where the same area (eg.
a room) was visited more than once in the same session, preferably
with good visibility of the area, from multiple viewing angles and be-
yond a simple straight-line path. More straight and linear segments
are expected to perform well due to consistent appearance and are
a target for future exploration.

3.2 Trials

The first traversal considered is in the same direction as the training
sequence, entering and then exiting the room in the same direction.
The training sequence is approximately frames 612 to 665 of the
corridor3 session, corresponding to visitation of a room containing
equipment. The test set is a second traversal soon after, following
roughly the same path from frames 713 to 759 (entering and exiting
via the same doors). A traversal in the opposite direction is available
near the conclusion of the session from approximately frames 4789
to 4829. A NeRF model was trained on the training sequence above
and then for the pose of each test frame a corresponding synthetic
frame was generated.

An additional trial was also undertaken with training frames
spaced more widely in time and encompassing more of the lead
in and exit of the room. This was to provide more observability early
in the sequence and more viewpoint difference between training im-
ages.

4 Preliminary Experimental Results

In Figure 1 is shown the trial along a similar trajectory to that of
the training set ( that with more closely sampled frames), passing
through the same place in the same direction. The frames on top
are the synthetic versions of the ground truth frames on the bottom.
These frames are representative of the overall sequence from entry
to exit. They are frames 721, 729, 737, and 745 in the corridor3
session of TUM IV. These are distributed through the course of the
traversal segment taken, with frames generated near the middle
having higher quality.

Also conducted was a training run with more spaced frames (ev-
ery four frames instead of every two) as noted above. This followed
the same path but the spaced out frames allowed for more of the en-
vironment to be captured, with hopefully more variation in viewpoint

Fig. 1: From left to right: synthetic frames 721, 729, 737, and 745
with their ground truth images.

Fig. 2: An abruptly clear synthetic frame (690), likely coinciding with
similar views at the end of the training set.

for the neural network to learn from. The quality of these frames
was not noticeably different from the ones show from the prior run,
except for the initial and concluding frames where it is believed the
reduced sampling rate spread available training images more thinly
and produced worse starting/ending synthetic frames which are oc-
casionally unintelligible.

One unusual synthetic frame from the very beginning of the run
stands out as being particularly clear and is presented in Figure
2. As discussed below, it is of the hallway outside the room and is
believed to have coincided with a few training images depicting the
hallway.

5 Discussion

5.1 Discussion of Results

In the initial trial covering the entrance and exit of the room, taking
every second frame for training and testing, there are a few frames
in the middle of the sequence that are the highest quality and in
which large-scale features and many smaller features of the room
are visible. (Figure 1, center) This is expected to be due to the con-
tents of these frames which having been observed from as many
viewpoints as possible as the camera turns and enters the room.
Overall the presence of large spatial features in many of the syn-
thetic images suggests that the synthetic images generated will be
of use with those VPR descriptors most sensitive to the spatial dis-
tribution of large elements for the reliable identification of a scene.

The set of images with more spaced out sampling of images
produced similar results, with perhaps negligible improvement. It
is believed that to obtain more consistently good results, not only
are more examples needed, but a wider variety of viewpoints would
be best. One may prefer to train the model on regions which re-
ceive frequent traversals, preferably from multiple viewpoints. This
provides a possible guide for where to allocate valuable training re-
sources, and suggests some form of complementary nature with de-
scriptors with poorer viewpoint invariance. The best trained NeRF
models may occur where there is the largest variation in viewpoint
and the worst descriptor performance.

Notably, one synthetic frame at the beginning of the trial with
more widely spaced frames has abruptly higher clarity (Figure 2)
compared to those immediately after it (which were similar to the
leftmost image of Figure 1). The frame in question is believed to
have a similar viewpoint to 1-2 images in the training set, looking
down an adjacent hallway.

This does highlight one lacking aspect of gathering frames from
continuous traversals of an environment. They tend to vary in view-
point gradually as opposed to the carefully curated multiple views



of an environment NeRF is normally trained on. In addition to rein-
forcing the point above about preferring traversals with variation in
viewpoint (or multiple traversals) during training, this also highlights
a point of caution. In linear environments which tend to result in es-
pecially similar trajectories, hallways being a prime example, there
may be a possibility of poor generalization and thus generation of
different viewpoints.

In future work we aim to make use of multiple traversals of more
environments and examine how the variety of training examples
provided affects the model’s ability to respond to changes in the
requested synthetic viewpoints, gauging the requirements of gener-
alization on trajectory frames. Also still ahead is the implementation
and testing on VPR descriptors upon NeRF’s synthetic images, per-
forming tests to determine how performance benefit the best syn-
thetic views can bring to the task of places recognition. This inves-
tigation lays the foundation of incorporation of NeRF virtual views
into VPR systems, though reduction of NeRF’s training overhead
will also be required.

5.2 Additional Suggested Exploration

Training of NeRF models is very intensive and it is desirable to re-
duce this burden. One way in which the continuous nature of tra-
jectories may be exploited is the gradual introduction of new scene
geometry. It may be possible in future to gradually evolve NeRF
models as the system travels and new views become available, sav-
ing model copies periodically for past regions. If true, this may help
to amortize the cost of NeRF training.

One observation made regarding even the best synthetic frames
and their ground truth is that there is frequently some small view-
point difference between them despite the same pose. A possible
explanation for this is drift in the SLAM system’s estimate of pose or
scale. A method worth considering in this case is the use of registra-
tion to better align the estimate of pose between the training images
and the current reference frame when requesting a synthetic image.
The easiest way to accomplish this may be to perform an additional
registration step using observed SLAM mappoints or other features.

6 Conclusions

Visual place recognition is a critical requirement for a variety of nav-
igational applications, but extensions to the conditions of it’s de-
ployment also pose new challenges. The need to compensate for
changes in appearance has lead to a tension with robustness to
changes in viewpoint. Synthetic views which can mimic alternate
viewpoints present a possible solution by decoupling these prob-
lems and providing consistent viewpoints to appearance-invariant
descriptors which underpin VPR’s recognition. We find training
NeRF synthetic view models on SLAM trajectories produces en-
couraging results in some situations. We recommend ensuring ad-
equate variation in viewpoint is provided which may be difficult with
linear trajectories. If possible, train from multiple trajectories to en-
sure generalization. We expect that with the suggestions made here
and continual improvement of the costs of NeRF training, Neural
Radiance Fields and similar view synthesis methods will become a
valuable tool to future VPR methods.
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