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Abstract

Effective representation learning is the key in improving model per-
formance for medical image analysis. In training deep learning mod-
els, a compromise often has to be made between performance and
trust, both of which are essential for medical applications. Moreover,
models optimized with cross-entropy loss tend to be over-confident
in incorrect predictions and under-confident in correct predictions.
In this work, we integrate a new surrogate loss with self-supervised
learning for computer-aided screening of COVID-19 patients using
radiography images. In addition, we adopt a new quantification
score to measure a model’s trustworthiness. Ablation study is con-
ducted for both the performance and the trust on feature learning
methods and loss functions. Comparisons show that leveraging the
new surrogate loss on self-supervised models can produce label-
efficient networks that are both high-performing and trustworthy.

1 Introduction

COVID-19 continues to affect our daily lives. In the fight against the
pandemic, computer-aided screening of patients using radiography
images has served as a complementary approach to standard
polymerase chain reaction (PCR) test. Recent research has been
conducted for developing deep learning models with improved
performance, given limited data from COVID-19 patients [1, 2].
Nevertheless, how much trust we have in the deep learning models
remains another challenge [3].

In improving model performance, effective representation learn-
ing is the key and it can be realized through un-supervised training
when data labels are missing or expensive to collect. A series of
self-supervised models have achieved comparable performance
to the supervised ones on benchmark data sets [4, 5]. They
learn image representations through minimizing an embedding
distance between image pairs derived from the same image, while
maximizing the distance between the pairs from different images.

Regarding model trust, a deep classification neural network
optimized on cross-entropy loss tends to be over-confident in its
incorrect predictions and under-confident in correct predictions.
In this work, we investigate a new surrogate loss function named
deep AUC Maximization [6] and integrate it with a self-supervised
model named MoCo [4]. To our best knowledge, this is the first
integration of the loss function with self-supervised learning. In
addition, we validate the models through quantitative comparisons
to gain insight into the models’ trustworthiness. Our assumption is
that, by adopting the new surrogate loss function to self-supervised
models, we no longer need to sacrifice model trust for performance
but can achieve both.

Our contributions are threefold:

• We proposed the use of a new surrogate loss on self-
supervised models to improve representation learning and
maximize metrics pertinent to the task of screening COVID-
19 patients.

• We showed that the use of a new surrogate loss can produce
models that are more trustworthy than those optimized with
cross-entropy loss.

• We provided case-by-case ablation studies of varying repre-
sentation learning and loss functions to demonstrate the ad-
vantages of the newly adopted loss function.

2 Literature Review

Self-supervised learning has gained momentum in learning visual
representations. It can be categorized into generative and dis-
criminative approaches. As a discriminative method, Momentum
Contrast (MoCo) trains a visual representation encoder by match-
ing an encoded query to a dictionary of encoded keys through a
contrastive loss [4]. The query encoder are shared with the key
encoder, which gets slow updates in order to achieve consistency
in learning visual representations.

In medical AI, contrastive learning has led to improved repre-
sentation learning. In [7], a model named MoCo-CXR proved that
linear models trained on MoCo-CXR-pretrained representations
outperform those without MoCo-CXR-pretrained representations.
Due to the scacity of COVID-19 patient data, the MoCo model has
been applied to predicting patient deterioration based on chest
X-rays [8].

Area under the Receiver Operating Characteristic curve (AUC)
is widely used in medical image analysis for evaluating the perfor-
mance of a neural network. Recently, Yuan et al. [6] proposed a
novel surrogate loss over the standard cross-entropy loss to directly
optimize for the AUC metric. AUC maximization, as the authors
claim, can lead to the largest increase in a network’s performance.
This new surrogate loss function was integrated with supervised
deep learning models and it achieved the first place in the Stanford
CheXpert competition [6].

3 Methodology

3.1 Model Architecture

Our approach leverages deep AUC maximization [6], a novel sur-
rogate loss proposed for medical image classification, with self-
supervised pre-training to maximize label efficiency, performance,
and model trust. In our experiments, we compare the loss func-
tion against traditional cross-entropy (CE) optimization on both self-
supervised and supervised models. The self-supervised model is
built on the MoCo framework [4] and it is pre-trained on MIMIC-CXR
dataset [9]. All models are then fine-tuned on COVIDx dataset [10]
for validations. DenseNet-121 is chosen as the backbone architec-
ture throughout our experiments [11].

3.2 Datasets

The MoCo model has been pre-trained on the MIMIC-CXR dataset
for predicting patient deterioration [8]. The dataset is composed
of 377,110 chest radiographs [9]. As the dataset was constructed
before the COVID-19 pandemic, it does not contain any positive
chest X-ray samples of COVID-19.

Table 1: Data split for COVIDx8B

Split Negative Positive Total
Train 13,794 2,158 15,952
Test 200 200 400

We perform end-to-end fine tuning on the COVIDx dataset [10].
The latest version COVIDx8B consists of 15,952 chest radiographs
for training and 400 for testing (Table 1). Each sample in the dataset
is labelled as either COVID-19 positive or negative. Stratified 5-fold
cross validation is conducted on the training split during the fine-
tuning stage to evaluate model performance.



3.3 Experiment Setups

The DenseNet-121 model pre-trained on the MIMIC-CXR using
the MoCo framework has a projection dimension of 128, whereas
the supervised model pre-trained on ImageNet has a projection
dimension of 1,000. For end-to-end fine tuning, the parameters
of the last fully connected layer of both pre-trained models are
replaced and randomly initialized with a single output neuron for
binary classification. We apply a sigmoid layer over the raw logits
of the model to obtain a probability distribution. All input images are
resized to 224x224, center cropped and normalized. Only random
horizontal flipping is used for data augmentation as further augmen-
tations were noted to provide little improvement for classification [8].

AUC Maximization. We adpot a novel surrogate loss function
introduced by [6] to maximize the area under the Receiver Oper-
ating Characteristic curve. For end-to-end fine tuning, we use a
learning rate of 0.1 for all layers of the DenseNet model. Then,
we optimize the network with the new surrogate loss function to
maximize the AUC metric. Lastly, we train for 30 epochs while
decaying the learning rate by a factor of 10 at the 15th epoch.

CE Optimization. For standard end-to-end fine tuning, we set
the learning rate at 1e − 3 for all layers of the DenseNet model.
Following similar procedures in [8], we use cosine annealing
learning rate decay to reduce the learning rate. Finally, we use the
SGD optimizer on cross-entropy loss with a momentum of 0.9 and
weight decay of 1e−4 to fine tune the model for 30 epochs.

During each validation fold, we first compute an optimal thresh-
old by maximizing F1-score on the validation split. Then, we save
the model corresponding to the best validation accuracy. Finally, we
evaluate the saved models on the unseen test split.

4 Experimental Results

4.1 Supervised vs. Self-Supervised Pre-training

We first examine the performance difference between traditional su-
pervised pre-training on ImageNet and self-supervised contrastive
pre-training on MIMIC-CXR. Tables 2 and 3 show significant
improvements in the precision metric of the negative class and the
sensitivity metric of the positive class for both CE optimization and
AUC maximization. In medical image analysis, this improvement
is key as maximizing the positive sensitivity score is necessary to
lower false-negatives.

However, this increase in performance comes at the cost of
model trust. We examine the trustworthiness of each model by cal-
culating a trust score of the positive class. As per the procedures
introduced in [3], we compute a score that rewards well-placed con-
fidence and penalizes undeserved overconfidence. In Table 4, we
notice that in the case of CE optimization, supervised models are
drastically more trustworthy than self-supervised models. More-
over, throughout our CE optimization experiments, we observed that
self-supervised models are less confident in its correct predictions
(overcautious) than its supervised counterparts.

4.2 CE Optimization vs. AUC Maximization

Our comparisons of CE Optimization against AUC Maximization
show improvements across standard metrics as well as overall
model trust-worthiness. Both Table 2 and Table 3 show im-
provements in the precision and sensitivity metrics regarding the
supervised models. Moreover, Fig. 1 demonstrates an increase in
the AUC scores of the supervised models. When examining self-
supervised models, AUC maximization still achieves comparable
performance to CE optimization.

Furthermore, we observe significant gains in model trust scores,
especially in the context of self-supervised models. Table 4 shows
a nearly 1% increase in supervised pre-training and a nearly 6% in-
crease in self-supervised pre-training. Moreover, when using AUC
maximization, we do not see the same disparity in model trust be-
tween supervised and self-supervised models. Therefore, unlike
CE optimization, we can freely leverage AUC maximization with

self-supervised pre-training to improve performance without sacri-
ficing model trust. As shown in Tables 2, 3 and 4, AUC maximiza-
tion allows us to achieve top metrics without trading off model trust
for performance.

Table 2: Precision scores on the unseen COVIDx8B test split. The
best metric out of each optimization method is bolded. The best
metric across methods is denoted by *.

Pre-trained Model Negative Positive
Supervised (CE Opt) 0.8960 ± 1.6% 0.9956 ± 0.4%

Self-Supervised (CE Opt) 0.9295* ± 1.6% 0.9978 ± 0.4%
Supervised (AUC Max) 0.9134 ± 1.4% 1.000

Self-Supervised (AUC Max) 0.9251 ± 0.6% 1.000*

Table 3: Sensitivity scores on the unseen COVIDx8B test split. The
best metric out of each optimization method is bolded. The best
metric across methods is denoted by *.

Pre-trained Model Negative Positive
Supervised (CE Opt) 0.9960 ± 0.3% 0.8840 ± 2.1%

Self-Supervised (CE Opt) 0.9980 ± 0.4% 0.9240* ± 1.9%
Supervised (AUC Max) 1.000 0.9050 ± 1.7%

Self-Supervised (AUC Max) 1.000* 0.9190 ± 0.7%

Table 4: Trust scores calculated from each experiment on the posi-
tive class. The best score overall is bolded.

Cost Function Supervised Self-Supervised
CE Opt 0.929 ± 0.9 % 0.879 ± 1.4 %

AUC Max 0.938 ± 1.0 % 0.937 ± 1.0 %

Fig. 1: Area under the Receiver Operating Characteristic curve. Er-
ror bars represent the standard deviation across cross-validation
runs.

5 Conclusion

This work demonstrates that we no longer need to sacrifice model
trust for performance. Integrating AUC maximization can produce
more trustworthy and better performing models. By extending the
AUC maximization paradigm [6] to self-supervised pre-training, we
showed that we can significantly improve key metrics while also
maintaining model trust.

We expect that our study on self-supervised learning with AUC
maximization will contribute to the classification of both COVID-19
and future illnesses. More often than not, we cannot afford to col-
lect large amount of labeled samples at the onset of a pandemic.
Therefore, it is important that we exploit existing data, apply effec-
tive representation learning to maximizing model performance, and
gain optimal model confidence.
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