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Abstract

Fiber tractography from magnetic resonance (MR) diffusion tensor
imaging (DTI) enables the visualization of white matter bundles. In
the presence of pathology, these bundles can be distorted and dis-
connected, which can reveal clinically significant information about
the nature of the underlying pathology. This work studies DTI in the
spine in the presence of pathology. A spine DTI pipeline that was
developed in an earlier study is evaluated against the pathological
data. We study the challenges of adapting the pipeline to pathologi-
cal spine data, where MRI artifacts and significant distortion in cord
shape and contrast from pathology make automated cord segmen-
tation and registration extremely challenging. Moreover, we identify
challenges with processing highly anisotropic MRI volumes and the
implications this has on DTI processing. Heuristics are developed
to handle these issues and are incorporated into the pipeline. Fi-
nally, visualizations of the tractography streamlines are generated
and the impact of pathology on the streamline trajectories is briefly
discussed, awaiting clinical validation.

1 Introduction

Fiber tractography has been studied extensively in the brain, where
it has been particularly influential in illuminating the connectivity of
different regions in the brain [1]. While there are fewer studies in
the spine, spinal cord fiber tractography visualizations have been
shown to have clinical significance when pathology is present [2].
Of interest to the work presented in this paper is the use case of
pre-surgical planning, where tractography can illuminate regions of
interest prior to surgery. The work in this paper builds upon ear-
lier work where an automated spinal cord DTI pipeline was devel-
oped and used to show the correspondence of fiber tractography
streamlines with the underlying anatomy [3]. This earlier work used
a dataset of healthy subjects and the MR imaging parameters were
controlled and consistent across all subjects.

The primary contribution of the current study is to extend the
aforementioned automated spinal cord DTI pipeline to a dataset of
clinical cases with pathology. Complementary goals are to: charac-
terize the dataset, and understand what imaging parameters of the
pathological MRI volumes make DTI processing more robust. The
short-term goal of this work is to inform MR acquisition parameters
for the collection of spinal cord DTI data for future work. Finally,
the broader goal is to use spinal cord tractography visualizations to
improve patient care, enabling better diagnosis, assessment, and
treatment planning.

2 Dataset

The dataset consists of retrospectively collected spine MR-DWI ac-
quisitions from 13 subjects. The images were acquired though col-
laboration with Synaptive Medical. The image volumes were ob-
tained from a variety of vendors with varying scanning parameters
informed by clinical indication. The pathologies vary between sub-
jects, with all subjects showing neurological symptoms. Table 1
summarizes some salient imaging parameters while 2 describes
the voxel spacing of the images. Shown in Figure 1 is a sagittal
slice from the dataset, where there is evidence of pathology from
the 4th - 7th cervical vertebrae (C4-C7), which is evident from the
morphological changes, change in tissue contrast, and the lack of
a clear definition of cerebrospinal fluid (which appears white) in that
region.

Table 1: MRI acquisition properties of the dataset.

Number Of
Studies

Magnetic Field
Strength

DMRI Direc-
tions

Contrast

6 3T 35 T1
3 1.5 T 26 T1
1 1.5 T 25 T1
1 1.5 T 31 T1
2 1.5 T 21 T2

Table 2: Image voxel spacing of the dataset.

Number Of Studies Anatomical Voxel
Spacing (mm)

DMRI Voxel Spacing
(mm)

8 1x1x1 2x2x2
2 0.35x0.35x4 0.85x0.85x4.5
2 4x0.42x0.42 1x1x3
1 1x1x1 2x2x3

3 Methods

3.1 Study Design

This paper had two goals. The first was to characterize the perfor-
mance of the pipeline implemented in an earlier work on spinal cord
MRI with pathology. This step will be referred to as ‘pipeline test-
ing’. Next, we investigated different approaches to improving the
performance of the pipeline on this new dataset. This phase will be
refered to as ‘pipeline improvements’.

3.2 Pipeline Testing

The steps of the aforementioned automated pipeline is briefly de-
scribed here. Given a structural MRI volume (T1, T2) and a diffu-
sion weighted MRI (DWI) volume, the pipeline first segments the
spinal cord region in both the structural and diffusion volumes. The
segmentations are used to inform a deformable registration from
the diffusion space to the structural space. Next, 2nd order diffu-
sion tensors are fit to the DWI to create DTI volumes which contain
3D diffusivity tensors at each voxel location. The diffusivities form
is shown in equation 1. The elements of the tensor are computed
by solving a system of linear equations obtained from the attenua-
tion at least of six diffusion gradients. The pipeline uses weighted
least squares to solve this system of equations. Finally, tractogra-
phy is used to estimate fibre bundles using an unscented kalman
filter approach described in [4].

Fig. 1: Spinal cord MRI with pathology at C4-C7.
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The pipeline leverages open source software, specifically, the
Spinal Cord Toolbox (SCT), which has tools for automatic spinal
cord segmentation and also has a spinal cord atlas [5]. SCT also
provides a thin wrapper for ANTs, which implements symmetric nor-
malization registration. 3D Slicer’s tractography tools are used to
perform tensor transformations, streamline estimation and visual-
ization.

The performance of the pipeline was tested against imaging
from all subjects. The pipeline was initially run with parameters de-
termined through optimization of performance on healthy volunteer
subjects.

3.3 Pipeline Extension

Three steps (segmentation, registration, and tract generation) of the
spine MRI DTI tractography pipeline were varied to investigate po-
tential improvement of the performance on the dataset containing
clinical cases with pathology. Segmentation: The segmentation of
the spinal cord region was varied by considering 3 different algo-
rithms, a 2D deep convolutional neural network (Deepseg2D) a 3D
deep convolutional neural network (Deepseg3D) and the previously
used propagated segmentation algorithm (Propseg). Registration:
The registration steps were adjusted by cropping input volumes to
only the spinal cord regions, thereby focusing registration on the
relevant features. Further diffusion and structural imaging were di-
rectly registered, and the inputs were downsampled. Tract Gener-
ation: The stopping criteria used to terminate streamlines was re-
laxed to allow more weakly connected regions to have streamlines
generated. This could potentially be advantageous in regions with
pathology because of disruptions in the diffusion signal.

3.3.1 Segmentation

SCT offers two different flavors of spinal cord segmentation. An
earlier iteration of the segmentation algorithm, Propseg, propagates
a mesh along the image and uses energy minimization to find the
ideal structure [6]. A more recent algorithm, called Deepseg, uses
a U-Net to segment the cord region [7]. There are two variants of
the Deepseg approach: Deepseg2d uses a 2D convolutional neural
network and Deepseg3d uses 3D convolutions. The first iteration of
the pipeline predates Deepseg. So a natural opportunity to extend
the pipeline is to experiment with the newer automatic segmentation
algorithm.

To test the performance of segmentation algorithms, we also
generate ground truth segmentations for each of the structural
scans and test the performance of SCT’s Propseg, Deepseg2d and
Deepseg3d algorithms. The dice coefficient is computed for each
of these generated volumes against the ground truth and the seg-
mentation performance is also qualitatively evaluated.

3.3.2 Registration

Registration is a challenging problem especially when there is a lot
of distortion, which we expect to find in the pathological dataset.
We, therefore, plan to test a variety of approaches designed to im-
prove registration.

One approach to improve registration is to crop the region out-
side the cord including the brain. This approach is suggested by the
developers of SCT. Fundamentally, the justification for doing this is
that it provides a way to bias the registration algorithm towards fo-
cusing on the cord region.

Another approach is to register the structural MRI and the dif-
fusion MRI directly with one another. In the earlier pipeline, this
was avoided; the diffusion MRI was first registered to SCT’s spinal
cord atlas, with the atlas then registered to structural MRI scan.
The motivation for doing this was to avoid biasing the tractography
streamlines with information about the anatomy, as the goal was to
measure the correspondence with the anatomy. As this was not the
goal of the current work, we test the effect of doing a direct registra-
tion between the structural and diffusion MRI.

Finally, owing to the very large anisotropy in the pathological
dataset, we experiment with downsampling the structural MRI so
that it has the same resolution as the diffusion MRI. We hypothesize

(a) (b)

(c) (d)

Fig. 2: Study a) is a representative examples of studies that work
fine with the pipeline in its initial state. Studies b-d do not regis-
ter well with the initial pipeline parameters due a) large spinal cord
pathology c) have some anatomical feature that makes registration
difficult (circled), d) has an MRI artifact

that this might improve registration performance, as this will force
the images to have similar spatial resolution.

3.3.3 Tractography

We also experiment with parameters of the unscented Kalman filter
tractography algorithm. In a previous work, we fixed the tractogra-
phy stopping threshold at 0.25, which describes the minimum frac-
tional anisotropy (FA) of the diffusion in a voxel we expect for it to
be considered part of a fiber bundle. This threshold is set to ensure
that spurious tracts are not found. Owing to the high anisotropy
and also owing to pathology, we expect the FA values to be lower.
We, therefore, experiment with removing this stopping threshold to
identify regions that might be weakly connected.

4 Results

4.1 Pipeline Testing

Running the unmodified pipeline on the pathological dataset did not
result in the successful production of MRI-DTI tractography in any
studies. 7 of the 13 studies, failed at the registration step. The
imaging that was successfully registered has isotropic voxels and
had only modest morphological changes cause by the pathology.
An example of a MRI slice that performs well is shown next to a
volume that fails to register with initial pipeline parameters. After
analyzing the results, we identified the reasons why the registra-
tion step fails. The reasons for not registering can be grouped into
two categories: 1) MR artifact, 2) pathology or anatomical features.
Table 3 summarizes the distribution of studies failing to register. It
should be noted that if both factors are present then the factor we
judge to be the greatest contributor is recorded.

We discuss the modifications needed to make the pipeline work
for this pathological spine data in the rest of dataset in the next
section.



Table 3: Results when running the unmodified pipeline

Reason not registering Number of studies
MR Artifact 2
Pathology 5

(a) Propseg (b) Deepseg2d (c) Deepseg3d

Fig. 3: Spinal cord segmentation using a) Propseg, b) Deepseg 2D
and c) Deepseg 3D.

4.2 Pipeline Extension

4.2.1 Segmentation

Shown in Table 4 are the mean Dice coefficients between the
ground truth segmentation and the segmentation predicted by the
various approaches. While the dice coefficients are generally high,
we observed that there was no clear choice for all studies, as
the segmentation performance varied across each study. Shown
in Figure 3 is an example of a study where Propseg outperforms
all other segmentation algorithms. More generally, we found that
Deepseg3D was more susceptible to contrast changes brought
about by pathology (as can be seen in figure 3), but is also able
to recover from discontinuity better than the other approaches.

Table 4: Cord segmentation mean and variance of the SCT seg-
mentation algorithms.

Segmentation algorithm Mean dice
Propseg 0.90
Deepseg 2D 0.91
Deepseg 3D 0.88

4.2.2 Registration

We test a variety of strategies to make registration perform better.
Table 5 provides qualitative results of how each modification had an
impact on cord registration. Using the techniques, we were able to
get 6 out of the 7 studies that could not register with the previous
pipeline registering. The study shown in Figure 2d) was unable to
register, due to the extreme MRI artifact present.

Based on these results, we can surmise that direct registration
of structural and diffusion MRI helps the registration algorithm. This
makes sense as the two images share some mutual information that
is not present in the SCT atlas, so this information cannot be used
by the registration algorithm to perform matching.

Based on the results, direct registration of structural MRI to dif-
fusion is insufficient. We found that when the field of view is drasti-
cally different between the diffusion MRI and the structural MRI it is
very difficult to correctly register the two volumes. In these cases,
we found that an affine transformation of the structural to the diffu-
sion space, which also down samples the structural MRI, helps the
registration algorithm to converge.

Finally, it should be noted that convergence of registration does
not imply that the registration was perfect. The presence of artifacts
still affects the registration, as can be seen in Figure 4, which shows
a registered DMRI with significant registration artifacts.

Table 5: Qualitative evaluation of techniques to improve registration

Technique Effect on Registration
Crop outside cord region No effect
Register structural MRI di-
rectly to diffusion

Allows registration to con-
verge for 5 studies

Downsample structural
MRI to diffusion spacing

Allows registration to con-
verge for 2 studies when
paired with direct registra-
tion of structural MRI and
diffusion MRI

(a) (b)

Fig. 4: Spinal cord diffusion MRI a) before and b) after registration.
Note the significant registration artifacts.

4.2.3 Tractography Threshold

Once we were able to register the diffusion MRI to the structural vol-
umes, we generated tractography streamlines. We found, perhaps
unsurprisingly, that the pathology from different subjects affected
the connectivity of white matter bundles. Shown in Figure 5 are
the tractography streamlines produced by modifying the stopping
threshold. We observe that they produce more spurious tracts and
the pipeline lacks functionality to find optimal tract thresholds.

5 Conclusion and Future Work

In this work we tested a spine DTI pipeline against a clinical dataset
with pathology and we show that the prior pipeline was insufficient
to adapt to this challenging dataset. Registration, in particular, was
the step with the worst performance. Registration was likely partic-
ularly challenging because of the inherent mobility within the spine.
Manually testing strategies to improve performance: segmentation
(Deepseg2D, Deepseg3D), registration preprocessing, and tractog-
raphy parameters demonstrated improvements in the pipeline per-
formance and we developed some heuristics that can be incorpo-
rated into the pipeline. However, registration accuracy was still sub-
optimal. Future work will focus on improving registration for clinical
evaluation and eventual translation of this work.

(a) (b)

Fig. 5: Spinal cord tractography with a) strict and b) lax FA thresh-
olds.
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