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Abstract

Besides vaccination, as an effective way to mitigate the further
spread of COVID-19, fast and accurate screening of individuals to
test for the disease is yet necessary to ensure public health safety.
We propose COVID-Net UV, an end-to-end hybrid spatio-temporal
deep neural network architecture, to detect COVID-19 infection from
lung point-of-care ultrasound videos captured by convex transduc-
ers. The COVID-Net UV comprises a convolutional neural network
that extracts spatial features and a recurrent neural network that
learns temporal dependence. After careful hyperparameter tuning,
the network achieves an average accuracy of 94.44% with no false-
negatives for COVID-19 cases. The goal of COVID-Net UV is to
assist front-line clinicians in the fight against COVID-19 as a de-
cision support tool via accelerating the screening of lung point-of-
care ultrasound videos and automatic detection of COVID-19 posi-
tive cases.

1 Introduction

The Coronavirus Disease 2019 (COVID-19) has resulted in a dra-
matic loss of life worldwide and posed an unprecedented public
health challenge. There is no doubt that vaccination has been help-
ing in mitigating the further spread of COVID-19. However, fast
screening of individuals to test for the disease is still necessary to
ensure public health safety [1]. Chest x-ray (CXR) and computed
tomography (CT) are two modalities that are often used for screen-
ing patients suspicious of COVID-19 infection. Another imaging
modality for diagnosing lung-related diseases is the lung point-of-
care ultrasound (POCUS). This modality has been suggested as
the most helpful in contexts/environments that are resource-limited,
such as emergency settings or low-resource regions/countries [1].
Compared to CXR and CT, POCUS is much cheaper to acquire and
has higher portability and accessibility, thus enhancing the ability for
possible COVID-19 screening [2].

Deep learning (DL) networks have been applied to POCUS im-
ages for different tasks and analyses such as segmentation, dis-
ease classification, and detection [3]. However, the protocol for
physicians to perform an ultrasound (US) examination requires
them to capture and analyze the US video, often from various an-
gles, views, and positions [1, 2]. This means that the sequences of
US video frames from one position or view to another can provide
physicians with more information to make an accurate diagnosis;
and perhaps not all frames of US videos contain signs and symp-
toms of a suspected disease. Therefore, applying DL to frames of
US videos only and without considering their temporal information
is not the ideal solution to adopt POCUS data for screening and
diagnostics purposes.

Motivated by this challenge and the promise of artificial intelli-
gence (AI) tools to aid clinicians, we propose COVID-Net UV, an
end-to-end spatio-temporal deep neural network architecture to de-
tect COVID-19 positive cases from POCUS videos. Our contribu-
tions can be summarized as follows: 1) the COVID-Net UV is an
effective tool for automatic detection of COVID-19 positive cases
from POCUS videos without requiring the need for technician in-
tervention and any further processing, 2) it also bridges the gap
in the current diagnostic procedure of POCUS data by eliminat-
ing the need for the time-consuming and costly training of human
experts, as interpreting US data requires domain knowledge [4].
We hope the COVID-Net UV helps front-line physicians and radi-
ologists in screening patients, especially in resource-limited set-
tings/environments/regions where current commonly used modal-
ities, e.g., CXR and CT, are rare or unavailable.

2 Related Work

Several techniques have been proposed so far for classifying var-
ious features in POCUS images and videos related explicitly to
COVID-19 disease. Some are DL models, trained and built mostly
using frame-based data as input. Roy et al. applied a DL model
derived from spatial transformer networks to predict the COVID-19
severity score associated with POCUS video frames. Their model
provided localization of pathological artifacts in a weakly-supervised
way and adopted a uninorms-based method for frame score aggre-
gation at the video-level [5]. First, they classified every single frame
of a POCUS image sequence into one of the four levels of disease
severity. Next, they predicted a score for the entire frame sequence
based on the same scoring scale by applying video-level grading.
In [6], authors took one step beyond [5] and presented a technique
for directly classifying POCUS videos based on a Two-Stream In-
flated 3D ConvNet (I3D). They categorized the main imaging fea-
tures seen in POCUS videos, such as A-lines, B-lines, consolida-
tion, and pleural effusion, to unveil the degree to which the infection
had affected the lungs. Both these works had different approaches
to analyzing PUCUS videos in the presence of COVID-19 disease.
However, what should be given special attention is that due to the
rapid progression of COVID-19 into a very critical condition, quick
diagnosis of the disease is very crucial. While reverse transcrip-
tion polymerase chain reaction (RT-PCR) as the standard test to
initially diagnose COVID-19 disease may take up to 24 hours and
requires multiple tests for definitive results, diagnosis using POCUS
videos can be much quicker. We aim to bridge the gap in the cur-
rent diagnostic procedure of POCUS videos to initially detect and
diagnose COVID-19 as fast as possible by learning spatio-temporal
features, combining Convolutional Neural Network (CNN) and Re-
current Neural Network (RNN) architectures.

3 Data and Methods

To train and evaluate the COVID-Net UV, we used the COVIDx-US
dataset v1.4. [7, 8] that contained 242 curated US videos, collected
and integrated from nine different data sources. The videos com-
prised four different classes: COVID-19 infection, non-COVID-19
infection, other lung diseases/conditions, and normal control cases.
The other lung diseases/conditions class included US videos of pa-
tients with various lung diseases and conditions, e.g., chronic ob-
structive pulmonary disease (COPD), pneumothorax, and hemoth-
orax. We filtered out the other lung diseases/conditions class due
to the heterogeneity of the cases. And, we only included lung US
videos captured with a convex probe, as we observed that including
data captured with the linear probe in training increased noise and
influenced the performance of the network negatively.

We formulated the problem as a binary classification problem,
i.e., the COVID-19 cases were labeled as positive and the normal
and non-COVID-19 cases as negative. This resulted in 119 videos
in total that were split into a training set with 76 videos (38 positives
and 38 negatives), a validation set with 25 videos (12 positives and
13 negatives), and an unseen test set with 18 videos (10 positives
and 8 negatives).

We employed a hybrid architecture that included convolutional
and recurrent layers to process spatial and temporal aspects of lung
ultrasound (LUS) videos, respectively. We adopted the InceptionV3
model [9], pre-trained on the ImageNet dataset [10], as the spatial
feature extraction backbone and added two layers of Gated Recur-
rent Units (GRU) units (16 + 8) to capture temporal features. Since
a video is an ordered sequence of frames, the frames can be ex-
tracted and stored in a 3D tensor. However, the number of frames
may vary from video to video, making it impossible to stack them in



Fig. 1: COVID-Net UV: a CNN-RNN architecture to classify POCUS videos into two classes of positive, i.e., COVID-19 infection, and
negative, i.e., non-COVID-19 infection.

batches. To overcome this problem, we first captured the frames of
a video. Next, we extracted frames from the videos until a maximum
frame count was reached. In this case, if the frame count was lower
than the maximum frame count, the video was padded with zeros.
We chose 60 as the maximum frame count, considering the char-
acteristics of the videos in the dataset. To optimize the network and
avoid over-fitting, we employed two callbacks in our training strat-
egy: 1) learning rate scheduler, where we decayed the learning rate
by a factor of 0.5 after three epochs with no performance improve-
ment on the validation set, and 2) early stopping, where training
was stopped after seven epochs with no performance improvement
on the validation set. The initial learning rate and the maximum
number of epochs were set at 0.001 and 30, respectively. The fi-
nal network was trained for 18 epochs (following the early stopping
strategy). Fig. 1 shows the high-level architecture of the COVID-Net
UV as well as the conceptual flow of the analysis.

4 Results

The learning curves through the process of training and optimizing
the network are illustrated in Fig. 2. The training of the network was
stopped right before the loss on the validation set started increasing
and avoided overfitting, as seen in Fig. 2-b. Following the learning
rate scheduler strategy, during the process of training, the learn-
ing rate was decayed two times through epochs 15 and 18 (Fig. 2-
c). We checked the performance of COVID-Net UV on the unseen
test set. The network learned to classify COVID-19 positive and
negative classes with an overall accuracy of 94.44%. The network
achieved a sensitivity of 100% and 87.50% for positive and negative
classes, respectively, meaning no false-negatives for the COVID-19
positive cases. The network reached a precision of 90.91% for the
positive class and 100% for the negative class.

5 Discussion and Future Work

In this work, we proposed the COVID-Net UV, a hybrid end-to-end
network architecture to classify lung POCUS videos for the diagno-
sis of COVID-19 disease. Our network comprises two modules: 1)
a pre-trained InceptionV3 to extract spatial features from LUS video
frames, and 2) RNN structure containing GRU units to learn the
temporal dependence between the video frames. The network has
a sensitivity of 100% in detecting COVID-19 positive cases. This
suggests that the COVID-Net UV can be used a powerful AI-based
decision support tool to assist clinicians. One may note that human
experts have a sensitivity of 86.4% [11] in performing a similar task
and similar models solely based on spatial architecture are reported
to have the highest accuracy of 83.2% [12]. We used a public LUS
dataset (i.e., the COVIDx-US) that includes data of various sources
and quality. The network could be potentially improved and further
validated by using larger datasets. The proposed methodology and
pipeline could be used in future studies on larger datasets and the
COVID-Net UV can be considered as a baseline for future works
in examining more complex models on the larger POCUS video
dataset. The network architecture can be tuned for new disease
categories. Future research could evaluate the performance of the
proposed architecture in other diseases. Another potential research
direction could be adding explainability component to the pipeline.

Fig. 2: Learning curves through the process of training and optimiz-
ing the network. (a) Accuracy, (b) Loss and (c) Learning rate
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