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Abstract

Despite the growing impact of emissions on health and environ-
ment, there remains an unmet need for emission concentration pre-
diction and forecasting. The accumulating monitoring station and
satellite data available makes the problem well suited for machine
learning. This work formulates the spatiotemporal prediction of
emission concentration as a machine learning task. To this end,
an evaluation framework including baseline models and metrics of
per-pixel loss and intersection over union accuracy, as well as a sim-
ple spatiotemporal ConvLSTM machine learning model were de-
veloped. The ConvLSTM model successfully generates one-hour
ahead emission concentration forecasts with increasingly lower loss
(6.5% and 30.5% less) and higher accuracy (18.4% and 18.6%
higher) compared to the input-independent and random baseline
models at the end of training. Crucially, compared to commonly
used, physics-based models for emission monitoring, the model
generalizes to unseen emission sources with no significant de-
crease in accuracy.

1 Introduction

Despite the widespread and growing impact of emissions on our
health and environment, there remains an unmet need for emission
concentration models. Every year, more than seven million people
die prematurely due to air pollution [1], and one in five people die of
air pollution from greenhouse gas emissions [2]. Yet every year, our
emissions continue to grow [3].

Conventional emission models represent the spatial and tem-
poral variation of substances such as greenhouse gases (GHG)
emitted either at the emission source or after release [4]. At the
source, an accounting of all emissions is done to conduct emission
inventories. The emission inventory consists of data reported by
emitters in accordance with regulations using prescribed, sector-
specific calculation methods inducing the emission factor, a num-
ber that relates the quantity of emissions from a source to units of
activity associated with emission release. However, these factors
are typically averages of available data and result in emission in-
ventories that are mostly useful as a knowingly gross estimation of
emission trends [5, 6]. After release, air dispersion models such as
Gaussian plume models AERMOD or CALPUFF are used to simu-
late the mixture of an emission with the atmosphere. These models
characterize key processes that control the dispersion and may be
used to predict the concentration further in space and time. How-
ever, these models are limited in their lack of generalizability as well
as required computational time and resources [7–9].

2 Methodology

This work focuses on formulating the emission modelling problem
as a machine learning problem and setting up a foundation where
increasingly complex models can be built upon. To evaluate feasi-
bility and properly scope the proposed research, this paper first for-
mulates the problem. Foundational preliminary work then consisted
of two tasks: preparing the data used to develop models with and
developing the baselines and metrics used to evaluate future mod-
els on. Finally, a simple classical ConvLSTM model is developed
and deployed. The results are used to demonstrate the developed
evaluation framework in action and to do a crude comparison of the
model to the baselines.

2.1 Problem Formulation

To scope, the modelling problem focus was selected as forecasting
emission concentration from point sources, as shown above in Fig-
ure 1, chosen due to the ease of data collection and the fact that
they account for 70% of all emissions [3]. The developed model
was required to generate one hour ahead predictions of emission

Fig. 1: Animated emissions from a point source.

concentration, given an input sequence of past six-hour emission
concentrations from the same point source. The forecast would be
made with the assumption of no significant change in land use or
buildings.

2.2 Data

Data for preliminary work was provided by Lakes Environmental Re-
search and included concentration data from various point sources.
Concentration was measured at 10m above the ground within a
square geofenced region around various point sources. Concen-
tration values were normalized and centered within a 164x164 ma-
trix. The dimension of each datapoint was (162, 162, 1): 162 pixels
in latitude, 162 pixels in longitude, and each point with one emis-
sion concentration measurement. The number of datapoints in each
dataset was 35,040 datapoints with one datapoint every 15 minutes
generated over one year.

2.3 Baselines

Baselines developed were simple benchmarks that serve as mean-
ingful reference points to compare the results of solutions to the toy
problem developed against. By comparing solutions to baseline out-
puts, the impact of changes to the models developed and changes
in data fed to the models on the predictions generated can be evalu-
ated. Two baselines were developed: a random chance benchmark
which corresponds to filling a matrix with randomly generated val-
ues and a zero-rule benchmark which corresponds to generating a
zero-matrix, the majority value of concentration as there are gener-
ally no emissions except where the plume is located.

2.4 Metrics

In order to evaluate the models against the baselines developed,
metrics were chosen to quantify their losses and prediction accu-
racy. During training, a loss function that measures the difference
between the pixel values of predicted and true images was first cre-
ated. Two standard metrics used to do so are per-pixel loss func-
tions using mean absolute error and mean square error. A per-pixel
loss function quantifies the total of all errors between the exact pixel
in each image. This is generally a calculation of mean absolute
error, which is also known as L1 loss.

Instead of mean absolute error, this work uses mean square er-
ror or L2 loss. This simply involves squaring the error instead of
taking the absolute value. Because mean square error has mathe-
matical properties which makes it easier to calculate gradients and
backpropagate error [10]. The equation used for mean square error



for the per-pixel loss function, is shown below in Eq. 1.

loss(y, ŷ) =
1
n

n

∑
i=0

(yi − ŷi)
2 (1)

There are several drawbacks to using per-pixel loss functions. In
summing the error of each pixel, content similarities are ignored. In
future work, a more refined loss function will be created that pri-
marily captures high-level differences between image content. For
example, where a per-pixel loss function would return a large er-
ror for two images that are identical except for being shifted by one
pixel, a perceptual loss function could return a small to zero amount
of error [11]. However, for this preliminary work, a differentiable and
quickly calculated indication of accuracy was selected. The per-
pixel L2 loss function is a good foundational metric that can later be
modified to add additional terms like perceptual loss or log-loss that
consider predicted probabilities to.

Model accuracy is a measure of how similar images of the pre-
dicted plumes generated by the trained models are to images of
the true plume. The first indicator that could be used is the final
per-pixel loss, as defined above using either L1 or L2 loss. How-
ever, because the accuracy will be evaluated on the trained models,
accuracy metrics can be developed that are not differentiable and
better capture high-level differences between image content. As
accuracy in this application is human-interpretable, one measure of
accuracy that could use is simply the evaluated human accuracy.
Manually looking at each predicted plume image overlayed on a
true plume image can be a check of how well the two images line
up. However, interpretation needs to be scaled up in order to evalu-
ate the accuracy of model predictions deployed on a large amount
of test data. One metric that captures some of this interpretation is
intersection over union (IoU) shown below in Eq. 2.

IoU(y, ŷ) =
y∩ ŷ
y∪ ŷ

(2)

IoU ∈ [0,1] where if y and ŷ are identical images, their calculated IoU
would be 1. To define the plume areas of intersection and union in
the predicted and true images, pixel values in both of images are
converted to True or False based on a threshold of 0, then take the
logical and as well as the logical or for the intersection and union,
respectively. The total IoU calculation for a test dataset then records
the average IoU values across all predicted and true images.

2.5 Models

In this preliminary work, a simple classical ConvLSTM model [12]
was developed consisting of two ConvLSTM2D layers with batch
normalization, followed by a Conv3D layer for the spatiotemporal
outputs. The ConvLSTM network was chosen as a simple first
model to check the correctness of the training and evaluation skele-
ton. The ConvLSTM developed was trained on the emission con-
centration dataset for the tasks of concentration prediction 1 and 2
hours ahead. The predictions were compared to the baselines us-
ing the metrics. The deployment of the model on the concentration
prediction task is described below.

3 Results

The ConvLSTM model took inputs of 162x162x1 resolution in a six-
hour window. The model then outputs the next hour prediction. Fig-
ure 2 shows the results of the trained model used to predict 1-hour
ahead forecast for concentration.

3.1 Loss

Figure 3 shows the average mean squared error loss of the model
predictions during training plotted against epoch. With each epoch,
the model updates its internal parameters, so it is expected for
loss to start high and trend downwards as parameters that better
describe the data are selected. It is also expected for validation
loss (orange) to be higher than training loss (blue) as the model is
trained on the training dataset, then applied to the unseen validation
dataset. In the loss vs. epoch plot, both training and validation loss
trend downwards, with validation loss about 10-20% higher than
training loss. Overall, Figure 3 suggests that despite a large amount
of loss, the model is behaving as desired in terms of overfitting.

Fig. 2: Input and predicted concentration plumes using the simple
ConvLSTM model. The first six frames are the input sequence. The
middle frame is the true 1-hour ahead prediction. The last three
frames are the ConvLSTM model as well as the baseline random
model and input-independent model predictions respectively. Each
frame is an hour time-step.

Fig. 3: Mean squared error loss plotted against epoch. Training loss
is in blue while validation loss is in orange.



Fig. 4: Comparison of mean squared error loss plotted against
epoch for all models run on the test dataset.

3.2 Accuracy

Accuracy was calculated using the intersection over union method
for the ConvLSTM model 1-hour forecasts using the validation
dataset. The average IOU was calcuated as 13.7% with most pre-
dictions under 20%. As an IOU of 100% would indicate two identical
images, the current IOU average of 13.7% is low and indicates that
the plumes images predicted using the ConvLSTM model are dis-
similar from the true plume images. This is expected, as a very
simple ConvLSTM model architecture was used with only two lay-
ers and there was little training of the model with only five epochs.
The lack of accuracy is also supported by the high loss of the model,
which was around 60% at the end of training for the validation test
set, as seen before in Figure 3.

3.3 Comparison to Baselines

Though the classical ConvLSTM model was intended to serve
mainly as a very simple test of the problem formulation and eval-
uation framework, having kept the training and validation hyperpa-
rameters the same, a crude comparison of the model to the base-
lines can be done. To do the comparison, the ConvLSTM model as
well as the two baseline models (random and input-independent)
were run on the reserved, unseen test dataset. The ConvLSTM
model was then compared to the two baselines using the evalua-
tion framework to calculate loss (Figure 4), accuracy (Table 1), and
performance on the 1-hour ahead forecasts.

Table 1: Comparison of intersection of union values of the 1-hour
ahead concentration forecasts using all model on the test dataset.

Model IoU (%)
ConvLSTM 18.9
Random 0.2
Input-Independent 0.0

Overall, the ConvLSTM model outperformed both baselines in
terms of loss and accuracy, which was expected. This was espe-
cially pronounced in the loss vs epoch plot seen in Figure 4 after a
few epochs, as the ConvLSTM model loss decreased significantly
(from 0.93 to 0.66 MSE) with training while the baselines remained
the same (around 0.71-0.74 MSE for the input-independent base-
line model and around 0.95 to 0.98 MSE for the random baseline
model). Accuracy as measured by IoU showed similar outperfor-
mance of the baselines by the ConvLSTM model, with 18.6% IoU
compared to 0.2% and effectively 0% IoU for the random and input-
independent baselines.

4 Conclusion

This work formulates the task of emission concentration prediction
as a machine learning task, describes the development of an eval-
uation framework including metrics of per-pixel loss and an inter-
section over union accuracy, as well as baseline models; and finally

presents the training of a simple ConvLSTM model to demonstrate
usage of the evaluation framework. The developed model success-
fully generates 1-hour ahead emission concentration forecasts with
lower loss and higher accuracy compared to baselines. The Con-
vLSTM model successfully generated 1-hour ahead emission con-
centration forecasts with increasingly lower loss (6.5% and 30.5%
less) and higher accuracy (18.4% and 18.6% higher) compared to
the input-independent and random baseline models at the end of
training. Comparison to the baseline models shows that the evalu-
ation framework functions as expected and hints to the promise of
models with greater complexity trained on richer data which might
further improve predictions and generalize even better to unseen
data. Future work increasing model and feature complexity is an-
ticipated to further improve accuracy and generalization to unseen
emission sources.
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