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Abstract

77% of adults over 50 want to age in place today, presenting a major
challenge of ensuring adequate nutritional intake. Recent advance-
ments in machine learning and computer vision show promise of au-
tomated tracking methods, but require a large high-quality dataset
to have accurate performance. Existing datasets comprise of 2D im-
ages with discretely sampled camera views, unrepresentative of the
different angles and quality taken by older individuals. By leverag-
ing view synthesis for 3D models, an infinite number of 2D images
can be generated for any given viewpoint/camera angle. In this pa-
per, we develop a methodology for collecting high-quality 3D mod-
els for food items with a particular focus on speed and consistency,
and introduce Foodverse, a large-scale high-quality high-resolution
multimodal dataset of 52 3D food models, in conjunction with their
associated weight, food name, language description, and nutritional
value. We also demonstrate 2D view synthesis using these 3D food
models.

1 Introduction

The desire to age in place has grown immensely in the past decade
with 77% of adults over 50 wanting to stay at home in 2021 [1].
However, one of the main challenges with aging in place is ensuring
adequate food nutritional intake. It has been reported that one in
four older adults that are 65 years or older are malnourished [2].
Given the direct link between malnutrition and decreased quality of
life [3], there have been numerous studies conducted on how to
efficiently track food nutritional intake.

While self-reporting methods such as food frequency question-
naires, food diaries, and 24-hour recall [4] are subject to substantial
bias with errors of up to 400% for 24-hour recall [5], more tech-
nologically enhanced methods such as mobile phone applications
[6, 7], digital photography [8], and personal assistants [9] are more
time-consuming and may require trained personnel. Promising re-
sults have been shown by pairing technological methods with ma-
chine learning and computer vision algorithms [10, 11]. However,
developing high performing machine learning methods requires a
large-scale high-quality dataset.

Unfortunately, existing datasets comprise of 2D images with
fixed or randomly selected camera views that are discretely sam-
pled [10, 12–16]. These set views introduce bias in terms of how
individuals take images with their camera which would affect the
training and accuracy of the model. In addition, the majority of older
individuals struggle with taking photos and hence, these discrete
views are not representative of the food images that would be taken
by aging in place individuals.

In order to create an effective model for nutritional intake track-
ing for aging in place, an assortment of images of different angles
and quality should be obtained to train an automated model. Yet, the
manual creation of a large-scale dataset would be time-consuming
and it would be difficult to capture all potential angles and photo
quality. On the other hand, 3D models allow for view synthesis as
these models can be postprocessed to generate an infinite number
of 2D images taken from any angle to reduce imbalance or bias
towards a certain viewing angle.

In this paper, we develop a methodology for collecting quality
3D models for food items with a particular focus on speed and con-
sistency, and introduce Foodverse, a large-scale high-quality high-
resolution multimodal dataset of 52 3D food models, in conjunction
with their associated weight, food name, language description, and
nutritional value. We also demonstrate 2D view synthesis using
these 3D food models.

2 Methodology

The two primary factors considered in the design of the data col-
lection pipeline are speed and consistency. Speed is important to
maximize the number of food models that can be collected in a fea-
sible amount of time for a large-scale dataset. Likewise, consistency
is also critical to minimize human interaction and likelihood of varia-
tion in collecting data so that the number of high-quality food models
obtained is optimized.

Though it is now feasible to use automated wearable cameras,
these devices have been found to be incredibly intrusive [17] and
pose significant ethical ramifications [18]. Given that the main goal
is convenient nutritional intake tracking for older individuals, recent
advances in mobile phone applications [6, 7] demonstrate that nutri-
tional intake tracking through mobile devices would be more conve-
nient and accepted by older individuals. Subsequently, mobile de-
vices are chosen for collecting images and specifically, the iPhone
[19] was chosen as the primary image capturing device due to its
popularity and quality camera resolution (though any phone with a
suitable camera could be used too).

Fig. 1: Setup for the data collection process for an exemplar sushi
piece.

To generate a quality 3D model of a food item, various 3D scan-
ner applications were compared based on their review rating, ex-
porting capabilities, and ease of usage. In addition to having a high
review rating and a variety of model export formats, Polycam [20]
also has a web interface with a shareable account for easy image
input captured from multiple devices [21]. Hence, leveraging the
Polycam app, 3D models of food items are generated from 2D im-
ages taken by the iPhone. Consequently, three main restrictions
are imposed by using the Polycam app. First, at least 70% overlap
between the photos is needed to produce quality 3D food models
without holes or blurs. Second, a variety of angles of the food need
to be captured to render a full model, and third, a maximum limit of



250 images is allowed for each food item.
To address the first restriction, an electric turntable with the

default rotation speed of a full rotation in 24 seconds and a cus-
tom image taking script implemented using the built-in Shortcuts
iPhone application is used to automatically collect consistent im-
ages of each food item in a short period of time whilst allowing for
at least 70% overlap between the photos.

However, to meet the second limitation, a variety of angles need
to be obtained for each food item. To ensure consistency between
item captures, the camera angles and food 6D-poses collected for
each food item should be the same. In experimenting with the num-
ber of camera angles, faster and more consistent performance is
obtained using two iPhones set at two different angles compared to
only one iPhone. Unfortunately, using two iPhones causes shadow
interference in the image captures for each iPhone due to the light-
ing conditions in the room. In particular, the room has sparse fluo-
rescent ceiling lights that are about 1 meter apart from each other.
Therefore, we experimented with a variety of tripod layouts to dis-
cern the setup with the least amount of shadows on the turntable.
As seen in Fig. 1, the setup for the data collection process has two
iPhones on adjacent tripods with very specific tripod distances for
each iPhone and low shadow interference on the exemplar sushi
piece on the turntable.

In terms of the third main Polycam limitation, coordination be-
tween the number of photos taken and the combinations of the food
item 6D-pose and the camera angle had to be determined. With a
limit of 250 photos, the ideal scenario for data collection is to posi-
tion the food in four different ways with two different camera angles.
As such, the photo limit and the number of combinations leads to
roughly 30 photos per food 6D pose-camera angle combination for
a total of 240 images. Hence, as seen in the custom Shortcuts
app in Fig. 2, the iPhones are configured to automatically take 30
consecutive photos. After taking 60 photos of the food item on one
6D-pose (30 photos per iPhone-tripod), the food item is rotated to
another 6D-pose and the custom Shortcuts app is started again.
Occasionally, due to the shape of some food items, four different
food 6D-poses is infeasible. For example, the egg and cheese bite
could not stand on its side without rolling when the turntable rotated.
Thus, to ensure consistency between image captures, the number
of camera angles is increased to compensate for the lower number
of possible food 6D-poses as seen in Table 1.

Fig. 2: Custom Shortcuts app used to take photos on the iPhones.

Table 1: Overview of the food 6D-poses and camera settings com-
binations in data collection to produce a total of 240 images for the
first and last row and a total of 180 images for the second row.

Num of Food 6D-poses Num of Camera Angles
2 4
3 2
4 2

Though the setup led to successful 3D model renderings, these
models often had pieces of their background included in the model
itself. To address this problem, the object masking feature in the
Polycam app is used to remove background from the images and
render only the food item. After conducting several experiments

using plates with different textures or colours, it was determined
that placing the food item on a white plate with low reflectivity and
having a black tablecloth on top of the table rendered the most con-
sistent quality of 3D models. Though the turntable has a white-ish
colour, the food item is not placed directly on the electric turntable
as cleaning the turntable is risky and hence, may result in irrepara-
ble damage.

The overall process to generate the 3D models of food items is
shown in Fig. 3 with an example of a successful 3D model rendering
displayed in Fig. 4. The total weight and protein weight of each food
item is weighed using a food scale and the food name along with the
language description is recorded for each food item. The nutritional
value is obtained from the food packaging or from the Nutrient Value
of Some Common Foods set posted on the Government of Canada
website [22] for non-packaged food such as apples.

Fig. 3: Overall process to generate 3D models of food items.

(a) 3D Model Image (b) 3D Model Mesh

Fig. 4: Example of a successful 3D model Polycam rendering.

2.1 Item-Specific Challenges

In the collection of various food items, we quickly discovered that
it is easier to render 3D models of certain types of food compared
to others. Specifically, models for textureless food such as cheese,
thin foods such as chips, and small items such as grapes often failed
to render or rendered in an unrecognizable fashion. On the other
hand, it is easier to generate 3D models of larger items with more
texture such as chicken strips or a chicken wing. Yet, irrespective of
texture or size, items that fall apart (have high fragility) throughout
the entire data collection process also led to poor model render-
ings. Such an instance is the tuna rice ball. Though the 3D model
for one tuna rice ball is successfully created, most of the tuna rice
balls failed to capture as the tuna would slip or change shape when
the sushi is flipped which resulted in a poor 3D model rendering.
Thus, extra care had to be taken during data collection for fragile
food items to ensure that a high-quality model could be captured. A
generalized summary of properties that contribute to the success of
a 3D model rendering along with examples is displayed in Table 2.

3 Foodverse Dataset

52 food models comprising of 20 unique types are created success-
fully using the pipeline proposed in Section 2 and are listed in Table
3. These models are saved in the OBJ and PLY file formats, two of
the most widely used file formats for 3D models [23]. Saved along
with the models are their associated weight, food name, language
description, and nutritional value. Examples of a language descrip-
tion are "a piece of tuna on rice" and "cucumber wrapped with sea-
weed and rice". The total number of food models per category is



Table 2: Quantifiers and examples for various properties that con-
tribute to a good quality (green) and poor quality (red) model ren-
dering.

Property Quantifier Example

Texture Low Cheese Block
High Granola Bar

Volume Low Grape
High Apple

Thickness Low Potato Chip
High Salad Chicken Strip

Fragility Low Chicken Wing
High Tuna Rice Ball

Table 3: Tabular listing of all 52 collected food items.

Food Item Type Number of
Different Weights

Salad Chicken Strip 7
Salad Beef Strip 6
Nature Valley Granola Bar 3
Apple 2
Carrot 1
Cucumber Piece 2
Chicken Wing 1
Half Bread Loaf 1
Captain Crunch Granola Bar 1
Near Whole Chicken 1
Chicken Breast 2
Chicken Leg 2
Meatloaf 4
Asian Pear 1
Egg and Cheese Bite 1
Salad Sushi Roll 6
Cucumber Sushi Roll 1
Shrimp Sushi Roll 4
California Sushi Roll 5
Tuna Rice Ball 1

shown in Table 4 with mixed protein referring to food items (e.g.,
tuna rice ball) that contain almost equal amounts of protein and
other categories such as carbohydrates. Roughly 4357 2D images
of these images are also stored with the 3D models and descriptors.

Table 4: Count of 3D food models in each category.

Food Category Total Count
Protein 23
Fruits 5

Vegetables 1
Carbohydrates 5
Mixed Protein 18

The main benefit of these 3D food models is that they allow for
view synthesis. Examples of leveraging view synthesis with a 3D
food model are shown in Fig. 5, Fig. 6, and Fig. 7 for a chicken leg,
egg and cheese bite, and apple respectively. View synthesis is uti-
lized in these figures as the postprocessed sample of generated 2D
images includes angles of the food that were not captured in the ini-
tial data collection process. As a result, similar 2D images obtained
by postprocessing 3D food models extend beyond the fixed camera
angles used in the data collection process to reduce imbalance or
bias towards a certain viewing angle.

4 Conclusion

In this paper, we introduced Foodverse, a large-scale high-quality,
high-resolution multimodal dataset of 52 3D food models in conjunc-
tion with their associated weight, food name, language description,
and nutritional value. The methodology to collect this dataset was
also presented along with the encountered challenges to develop
the pipeline. Leveraging the 3D models in the dataset, 3D food
scenes can be generated and when coupled with automated view
synthesis algorithms, an infinite number of 2D images can be ob-
tained from any angle. Such an approach would allow for a more

(a) 3D Model Mesh (b) Generated 2D Images

Fig. 5: Postprocessed sample of 2D images obtained from 3D food
model of a chicken leg.

(a) 3D Model Mesh (b) Generated 2D Images

Fig. 6: Postprocessed sample of 2D images obtained from 3D food
model of an egg and cheese bite.

(a) 3D Model Mesh (b) Generated 2D Images

Fig. 7: Postprocessed sample of 2D images obtained from 3D food
model of an apple.

representative and unbiased image dataset that can be used to
develop an effective model for nutritional intake tracking for older
adults.

5 Future Work

Further studies can be conducted using Foodverse to generate an
assortment of 3D food scenes and an automated collection of a
variety of 2D images from different angles, quality, and lighting con-
dition. A major challenge with creating a food dataset is accounting
for numerous dish combinations and layouts. Having 3D models of
individual food items permits efficient swapping and the automated
assembly of a variety of dish combinations. As an example, by hav-
ing the individual pieces of a salad, one could assemble various
types of salad without actually having to obtain and image each
salad type. Furthermore, substitution of sides in a dish would be as
easy as swapping the 3D food models. Such substitution could be
easily automated using food categories and adding constraints to
ensure realistic food renderings.
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