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Abstract

Subpixel mapping (SPM) of a hyperspectral image (HSI) allocates
land cover fractions or discrete abundances in original pixels, so
that the resolution of the HSI label map becomes finer by dividing
the mixed pixel to subpixels. Most of existing SPM approaches have
the limitation of unlearnable spatial prior in HSIs and nonintegrated
frameworks. In this paper, we present an unsupervised Bayesian
subpixel mapping network for hyperspectral images. An end-to-end
unified SPM network with an encoder-decoder architecture is de-
signed to incorporate the fully convolutional neural network (FCNN)
with the deep image prior and the forward models to effectively es-
timate the subpixel labels. The proposed approach is tested on
a benchmark real HSI dataset, in comparison with several other
SPM methods. The results demonstrate that the proposed method
is more effective for SPM of HSIs with higher numerical accuracies
and more accurate visual maps of subpixel labels.

1 Introduction

Hyperspectral imaging is a rapidly growing remote sensing tech-
nique and has been used widely used for applications, such as
ground target classification [1–3], agricultural management [4] and
environmental monitoring [5, 6]. Hyperspectral images (HSIs) have
hundreds of narrow and contiguous spectral bands, recording the
electromagnetic radiation from the earth surface and the atmo-
sphere [7]. However, due to the trade-off between the spectral res-
olution and spatial resolution in HSIs, pixels in HSIs usually contain
spectral contributions from multiple materials. Spectral unmixing
(SU) decomposes these mixed pixels into both the spectral signa-
tures of constituent components (i.e., endmembers) and their cor-
responding fractional proportions (i.e., abundances) from the mixed
pixel in HSI [8]. However, SU processes HSIs in a manner of soft
classification at the original observation scale, without knowing the
spatial distribution of the endmembers inside the mixed pixel [9].

Subpixel mapping (SPM) assigns abundances to HSI pixels to
create a finer label map by dividing the mixed pixel to subpixels
[10]. Efficient SPM approaches are crucial due to the requirements
of wide-range applications, such as environmental monitoring [11–
13], target detection [14], and rural land cover objects [15]. An unsu-
pervised Bayesian SPM network (BSMN) for HSI which integrates
the forward downsampling model with a fully convolutional neural
network (FCNN) in a Bayesian framework is designed and imple-
mented.
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Fig. 1: Illustration of the relationship between the subpixel labels and discrete abundances coarse
pixel.

2 Problem Formulation

We assume that an observed HSI data cube XXX has P spectral
bands, N pixels containing m rows and n columns, and the term
I represents the set of coarse pixel sites in HSI, we denote the ob-
served reflectance of the pixel at site i by xxxi, which is a P×1 vector.
Then the HSI can be expressed as XXX = {xxxi|i = 1,2, ...,m× n}. The
term J represents the set of subpixel positions within each coarse
pixel, which contains a total of c2 positions. For example, when

c = 2, a coarse pixel is divided into 2×2 subpixels, and the coarse
HSI containing m×n pixels corresponds to a fine HSI with the size
of 2m × 2n subpixels. Assuming that the HSI covers K classes,
the SPM aims to infer subpixel labels LLL = {llli, j|i ∈ I, j ∈ J} in the
HSI, where llli, j is a one-hot vector K × 1 vector. Then, a coarse
pixel xxxi can be formulated a linear combination of K endmembers
AAA = {aaak|k = 1,2, ...,K} weighted by the discrete abundances plus
noise nnni:

xxxi =
K

∑
k=1

aaak
∑

c2

j=1 δ
(
llli, j,kkk

)
c2 +nnni, (1)

The noise distribution is assumed to satisfy a Gaussian model. The
discrete abundance sssi of a coarse pixel is determined by the pro-
portions of subpixels labels. “kkk" is the one-hot representation of “k".
δ (uuu,,,vvv) is the Kronecker delta function where δ (uuu,,,vvv) = 1 for uuu === vvv
and δ (uuu,,,vvv) = 0 otherwise. For example, when c = 2, if the subpixel
labels indicate one subpixel in the class “tree" and three subpixels
in the class “flower" among the 2× 2 subpixels, the discrete abun-
dance sssi corresponding to the coarse pixel is a 2× 1 vector written
as [1/4;3/4], as illustrated in Figure 1.
MAP estimation.The SPM problem can be solved by the MAP ap-
proach by maximizing the posterior distribution of LLL given the ob-
served HSI XXX and the model parameters (i.e., endmembers AAA).
Maximizing p(LLL | XXX ,,,AAA) is equivalent to minimizing its negative log-
arithm likelihood. The objective function can be reformulated as
follows [16],

argmin
L

N

∑
i=1


∥∥∥∥∥xxxi −

(
K

∑
k=1

aaak
∑

c2

j=1 δ
(
E(llli, j),kkk

)
c2

)∥∥∥∥∥
2 (2)

This objective function has following characteristics: (i) the EM al-
gorithm estimates parameters by treating {llli, j} as missing obser-
vations and {aaak} as model parameters, and iteratively updates the
estimation of {llli, j} and {aaak}. (ii) We use E(llli, j) as the estimation
of llli, j. we use {xxxi} as input to the FCNN and optimize network pa-
rameters. Once the FCNN is trained, we obtain l̂lli, j = f (llli, j). (iii)
When estimating parameters in the FCNN for obtaining E(llli, j), we
use a reconstruction loss based on ||xxxi − x̂xxi||2, which incorporates a
forward model to constrain meaningful llli, j estimation.
EM Iteration. The main steps in EM algorithm to estimate {llli, j} and
{aaak} are summarized as follows.
Initialization: Set the initial value for {aaak}. The endmember of each
class is manually selected from the coarse HSI.
E-step: Given endmembers {aaak}, estimate subpixel labels {llli, j} by
optimizing a FCNN.
M-step: Given {llli, j}, estimate endmembers {aaak}. Endmembers
{aaak} are estimated with the purified means approach [17].

3 Experiment

We use the coarse HSI as the input of the FCNN, and the out-
put is the soft subpixel labels. The forward model is implemented
with an average pooling downsampler to map soft subpixel labels
to discrete abundance of coarse pixels, and a linear combination to
reconstruct the HSI using discrete abundances and endmembers.
The FCNN is implemented with a U-Net type “hourglass” architec-
ture with skip-connection [16] to model a mapping from the input to
soft labels of subpixels.

Figure 3 shows the SPM results for the Jasper HSI scene ob-
tained by different SPM methods. The subpixel label map obtained
by the BSMN methods shows the most detailed spatial textural in-
formation and achieves the highest numerical accuracy. Table 1
shows the individual classification accuracy achieved by different
methods on the HSI. The proposed BSMN performs the best on the
class “water", “tree", and “soil". Although the “road" class accuracy
is relatively low, the outline of the road is still clearly visible in Fig-
ure 3. We attribute the false negative pixels for road class to the
smoothness property of convolutions.
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Fig. 2: Subpixel mapping framework. The encoder is a skip-connection FCNN designed for the estimation of soft labels of subpixels {llli, j},
where DIP is used to model the spatial correlation of the label field. The decoder has two parts. One part is the forward downsampling
model which maps soft labels of subpixels to the class proportions sssi. The other part of the encoder reconstructs the HSI X̂XX with sssi and
endmembers AAA extracted from the HSI XXX .
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Fig. 3: Subpixel mapping results of different methods on Japser
dataset.

Table 1: Individual and overall class accuracies (unit: %).

Methods Water Road Tree Soil OA

SPMSS[18] 64.94 41.43 45.78 39.13 50.21
RBF[19] 88.45 71.71 0.5560 48.72 66.22
PSSM[20] 91.28 53.25 58.69 54.04 67.99
SASM[21] 92.09 59.36 60.38 57.87 70.24
SPM_LM[22] 99.91 65.74 84.88 73.15 85.59
GAAI[23] 99.97 64.28 87.12 71.21 85.81
BSMN 100.00 23.24 90.58 83.03 86.81

4 Conclusion

We presented an unsupervised Bayesian subpixel mapping network
for HSIs. An encoder-decoder architecture was designed to incor-
porate the FCNN with DIP prior and the forward models to effec-
tively estimate the subpixel labels. BSMN adopted FCNN rather
than fully connected layers to better exploit the spatial correlation
effect in HSI. An efficient purified means approach was adopted
to the SPM framework for the endmember estimation. The result-
ing Bayesian MAP framework is solved by the proposed EM ap-
proach. The proposed approach was tested on both real and simu-
lated HSIs, in comparison with several other SPM methods. The re-
sults demonstrated that the proposed BSMN method was more ef-
fective for SPM of HSIs with higher numerical accuracies and more
accurate visual maps of subpixel labels.
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