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Abstract

As the COVID-19 pandemic continues to put a significant burden
on healthcare systems worldwide, there has been growing inter-
est in finding inexpensive symptom pre-screening and recommen-
dation methods to assist in efficiently using available medical re-
sources such as PCR tests. In this study, we introduce the de-
sign of COVID-Net Assistant, an efficient virtual assistant designed
to provide symptom prediction and recommendations for COVID-
19 by analyzing users’ cough recordings through deep convolu-
tional neural networks. We explore a variety of highly customized,
lightweight convolutional neural network architectures generated via
machine-driven design exploration (which we refer to as COVID-
Net Assistant neural networks) on the Covid19-Cough benchmark
dataset. The Covid19-Cough dataset comprises 682 cough record-
ings from a COVID-19 positive cohort and 642 from a COVID-19
negative cohort. Among the 682 cough recordings labeled posi-
tive, 382 recordings were verified by PCR test. Our experimental
results show promising, with the COVID-Net Assistant neural net-
works demonstrating robust predictive performance, achieving AUC
scores of over 0.93, with the best score over 0.95 while being fast
and efficient in inference. The COVID-Net Assistant models are
made available in an open source manner through the COVID-Net
open initiative and, while not a production-ready solution, we hope
their availability acts as a good resource for clinical scientists, ma-
chine learning researchers, as well as citizen scientists to develop
innovative solutions.

1 Introduction

The coronavirus 2019 (COVID-19) pandemic, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contin-
ues to impact human society worldwide significantly. Real-time
reverse transcription polymerase chain reaction (RT-PCR) testing
remains the most reliable standard screening tool for detecting
COVID-19. While RT-PCR testing is the primary screening tool
against COVID-19, it typically requires two to three days to complete
and significantly burdens the healthcare system. Another widely
used screening test is the antigen test. They are rapid tests that
produce results in 15-30 minutes. While medical screening tests
are becoming more accessible and widespread, many countries do
not have widespread access, especially in some developing coun-
tries.

Earlier works show deep learning is successful on particular
COVID-19 classification tasks [1, 2] with deep convolutional neural
networks (CNNs). Deep learning algorithms involve using a dataset
to train a tailored parameterized model to help detect symptoms and
scientific evidence. The success of deep learning led researchers
to explore new diagnosis methods via visual information, such as
chest X-rays and CT images. However, a successful deep learning
algorithm usually leverages a large dataset with high-quality labels,
which is expensive in medical studies. Nevertheless, such visual
information is challenging to retrieve in a short time. A more afford-
able and efficient pre-screening method is beneficial to the use of
medical resources.

Coughing is one of the primary symptoms of COVID-19 and is
also the consequence of other diseases. Due to the difference in
infection sources, cough sounds may differ in patterns hardly de-
tectable by humans. With signal processing techniques, impercep-
tible patterns can be learned and detected by deep learning tech-
niques. One of the signal processing techniques is Mel-frequency
cepstral coefficients (MFCCs), which work well with CNNs.

Motivated by providing an affordable and accessible tool to pro-
vide early recommendations and leverage the use of diagnostic
tests in the fight against the COVID-19 pandemic, in this work, we
present a design of a virtual assistant — COVID-Net Assistant. It
can sit on a mobile device or website to provide early COVID-19

Fig. 1: Overview of COVID-Net Assistant Workflow

recommendations based on cough recordings due to the feasibil-
ity of retrieval. Figure 1 shows the workflow of COVID-Net Assis-
tant: 1) An individual records or uploads cough audio through the
application; 2) The audio gets processed by an efficient deep con-
volutions neural network to predict whether the individual may have
signs of COVID-19; 3) If the network predicts signs of COVID-19
based on the audio, it will give the user a recommendation that they
may have signs and seek medical advice or further testing using
COVID-19 tests such as PCR and antigen tests.

We hope the open-source nature of the COVID-Net Assistant 1

encourages further innovation.

2 Data

We found three public cough datasets that frequently used in
relevant research: the COUGHVID [3] dataset, Coswara [4]
dataset, and Covid19-Cough [5] dataset. The positive samples in
COUGHVID and Coswara datasets are all self-reported, which does
not guarantee the correctness of labels. In our study, we require
strong labels to indicate the status of COVID-19 infection; therefore,
we chose Covid19-Cough as the main dataset to move forward.

This Covid19-Cough dataset consists of 1324 raw audio sam-
ples with 682 cases labeled positive, and 382 of them are confirmed
by PCR test. For the audio pieces labeled negative, no verification
information is provided. The audio was collected through a call cen-
ter or telegram. We excluded two malformed audio files in our study,
leaving us with 1322 pieces of audio, with 681 labeled positive and
381 positive samples verified.

In our study, we trained deep learning models with two dataset
splits. The first split, namely Verified-Only, excludes all unverified
positive samples as we aimed to experiment with high-quality la-
bels. The other split, namely All-Data, contains a total of 1322 valid
samples from the Covid19-Cough dataset. We used 60%, 20%,
and 20% of the audio for each dataset split as the training, valida-
tion, and testing data, respectively. Table 1 shows the exact label
distribution in each dataset split.

Table 1: Dataset Split and Label Distribution.

Dataset Split Sub-split Positive Negative

All-Data
Train 424 369

Validation 138 126
Test 119 146

Verified-Only
Train 238 375

Validation 73 131
Test 70 135

1https://github.com/fshipy/COVIDNet-Assistant



3 Methodology

3.1 Data Processing

To leverage the power of deep convolutional neural networks
(CNNs), we processed the raw audio using the librosa [6] library to
extract Mel-frequency cepstral coefficients (MFCC) features. MFCC
is widely used in audio processing and is used in related work
[7, 8]. The complete data processing pipeline comprises the fol-
lowing steps:

1. Load raw audio using librosa [6].
2. Apply data augmentation to raw audio.
3. Extract MFCC features from augmented audio.

The raw audio files are loaded with a sample rate of 48000 Hz. We
applied data augmentation to alleviate the scarcity of data and the
over-fitting issue, as we will address later. We found that data aug-
mentation helps to scale the data and improve model performance.
We used audiomentations 2, another python library, to apply the
augmentations. For every piece of training audio, another five aug-
mented pieces are generated with random trimming, shifting, Gaus-
sian noises, and pitch shifting.

Afterward, MFCC features are extracted using librosa [6]. By
using MFCC, we hope it can reveal strong signals in the data and
filter out noisy signals. To extract the MFCC features from audio,
the time domain input is first mapped to the frequency domain by
taking the discrete Fourier transform. Then a mel-scaling, defined
by Eq. 1, is applied to the frequency domain data to map the fre-
quencies to conceptually equally distanced pitches as perceived by
humans.

m = 2595∗ log(1+
f

100
) (1)

Finally, a discrete cosine transform is applied to the log of the previ-
ous result to obtain the coefficients. In our work, we used 32 MFCC
coefficients, 32 mel bands, and an FFT window size of 2048. The
MFCC feature extraction will transform an audio into an image-like
data with shape 32×328×1 to be used as the input to deep convo-
lutional neural networks. Compared to related works [7], we used
more MFCC coefficients for two reasons. First, we believe strong
signals in cough sounds might be hidden in information impercep-
tible by humans, encoded by higher MFCC coefficients. Second,
we believe that by using generative synthesis [9], we will be able to
train and optimize the models that are aware of which part of the
data is essential.

3.2 Machine-driven Design Exploration

Inspired from earlier works of COVID-Nets [1, 2], the final architec-
ture designs of deep neural networks in COVID-Net Assistant were
discovered automatically via a machine-driven design exploration
process using generative synthesis [9]. The architecture exploration
process identified the optimal macroarchitecture and microarchitec-
ture designs of the tailored model architecture. With user-defined
performance metrics, dataset, and seed architecture, the optimal
architecture is determined via an iterative constrained optimization
process based on a universal performance function (e.g., [10]) and
a set of quantitative constraints. The architectures discovered via
generative synthesis are highly customized designs that compro-
mise complexity and representational power, that is outperforming
manual design with greater flexibility and granularity [1].

3.3 Model Architectures

To leverage the power of generative synthesis [9], we built the seed
architectures by experimenting with three fundamental convolution-
based cells, which are prevalent in building light-weight computer
vision models: 1) COVID-Net Assistant CNN built with standard
convolutions; 2) COVID-Net Assistant Res-CNN build with residual
blocks [11]; 3) COVID-Net Assistant DW-CNN build with depth-wise
separable convolutions [12]. In particular, residual blocks bring ben-
efits in building deep networks, as it uses identity mapping to tackle
the vanishing gradient problem [13]. Depth-wise separable convo-
lutions increase the representation power of a model while reducing
the number of parameters and computation [14].

2https://github.com/iver56/audiomentations

Due to the limited training data, we found that the originally pro-
posed ResNet [11] and MobileNetV1 [12] architectures can easily
over-fit the training set, and result in a poor performance in the test
set. To tackle the over-fitting issue, we built models with dropout
layers and fewer parameters. In our experiments, we built multiple
seed designs with the aforementioned fundamental cells, as shown
in Table 2. For each model architecture built with residual blocks
(Res) and depth-wise separable convolutions (DW), we built three
variants (S, M, L) with increasing complexity. The complexity was
mainly raised via larger filter size, more layers, and the value of
strides in stage 1. After Stage 1, we added spatial dropout layers
after convolutional layers with a stride of 2. Each feature extrac-
tor variant in Table 2 is followed by an average pooling layer and a
fully connected classification head with a Sigmoid output activation
function.

Table 2: Seed Designs of COVID-Net Assistant Models, Annotation
Follows: "filter size, number of filters, stride"

Seed Design Stage 1 Stage 2 Stage 3 Stage 4

CNN
Conv 3x3, 32 Conv 3x3, 64

Batch Norm -Conv 3x3, 32 Conv 3x3, 64
Maxpool 2x2 Maxpool 2x2

Res-CNN-S Conv 3x3, 64, s2
Res 3x3, 64, s2

- -
Res 3x3, 64

Res-CNN-M Conv 3x3, 64, s2
Res 3x3, 64, s2 Res 3x3, 64, s2

-
Res 3x3, 64 Res 3x3, 64

Res-CNN-L Conv 7x7, 64, s2
Res 5x5, 64, s2 Res 3x3, 64, s2 Res 3x3, 64, s2

Res 5x5, 64 Res 3x3, 64 Res 3x3, 64

DW-CNN-S Conv 3x3, 32, s2
DW 3x3, 64, s2

DW 3x3, 128 -
DW 3x3, 64

DW-CNN-M Conv 3x3, 32
DW 3x3, 64, s2 DW 3x3, 128, s2 DW 3x3, 256, s2

DW 3x3, 64 DW 3x3, 128 DW 3x3, 256

DW-CNN-L Conv 9x9, 32
DW 9x9, 64, s2 DW 7x7, 128, s2 DW 3x3, 256, s2

DW 9x9, 64 DW 7x7, 128 DW 3x3, 256

3.4 Training Policy

All seed designs of proposed COVID-Net Assistant neural networks
were trained using the Adam optimizer with a binary cross entropy
loss function. In our training configuration, the learning rate would
be decayed by a factor of 0.75 if the validation loss has not im-
proved for two epochs, with an initial value of 0.0002 (ReduceL-
ROnPlateau). The training would be terminated early if validation
loss stopped improving for 10 epochs with 150 maximum training
epochs (EarlyStopping). We constructed, trained, and evaluated
the models using TensorFlow Keras.

4 Results

We set up experiments to compare the representation power and
efficiency of COVID-Net Assistant models generated via generative
synthesis [9], based on different seed designs introduced in sec-
tion 3.3. Specifically, we evaluated the Area under the Receiver
Operating Characteristic Curve (AUC) as the primary performance
metric. To express the theoretical capacity of models, we also cal-
culated the total number of parameters and floating point operations
(FLOPs) of the final architectures of COVID-Net Assistant models.

Table 3 shows the performance and capacity of each proposed
COVID-Net Assistant deep neural network generated via generative
synthesis differentiated by seed designs. From Table 3, we noticed
that COVID-Net Assistant CNN has dominant performance on the
Verified-Only split, with the second smallest model in terms of the
number of parameters. In addition, there is a slight increase in AUC
by increasing the complexity of a residual block architected seed de-
sign (Res-CNN). In contrast, increasing the complexity of a depth-
wise separable convolution architected seed design (DW-CNN) will
cause a slight drop in the AUC score. The variants of COVID-Net
Assistant DW-CNN have relatively small capacities, especially for
models generated with seed design DW-CNN-S/M, whose numbers
of FLOPs are less than 1/8 of other models. We also noticed a dif-
ference in the capacity levels of final architectures while the models
were trained on different dataset splits with the same seed design.
For example, the generated COVID-Net Res-CNN-S trained on All-
Data Split has FLOPs fewer than half of the one trained on Verified-
Only Split, while the number of parameters is only 3% fewer. From
our investigation, the difference is mainly in the number of filters in



Table 3: Theoretical Evaluation Results of COVID-Net Assistant
Models, Format Follows "All-Data Split / Verified-Only Split"

Seed Design AUC Params (K) FLOPs (M)
CNN 0.7815 / 0.9508 6.6 / 4.6 63.3 / 45.8

Res-CNN-S 0.7828 / 0.9349 74.3 / 76.3 25.2 / 59.7
Res-CNN-M 0.7887 / 0.9394 161.4 / 228.8 39.7 / 55.6
Res-CNN-L 0.8039 / 0.9388 254.8 / 229.0 176 / 66.7
DW-CNN-S 0.7860 / 0.9330 3.5 / 3.9 3.9 / 4.5
DW-CNN-M 0.7832 / 0.9304 25.2 / 23.7 6.2 / 6.5
DW-CNN-L 0.7692 / 0.9305 34.1 / 35.2 71.0 / 71.1

Table 4: AUC Score of COVID-Net Assistant Models Trained with
All-Data Split on the Filtered Test Set

Suffix AUC
CNN 0.9411

Res-CNN-S 0.9189
Res-CNN-M 0.9453
Res-CNN-L 0.9353
DW-CNN-S 0.9439
DW-CNN-M 0.9015
DW-CNN-L 0.9362

the first two stages described in Table 2, which are the most compu-
tationally expensive stages. We also noticed that a more complex
seed design could result in a model with fewer FLOPs via gener-
ative synthesis. For instance, the final architecture of COVID-Net
Assistant Res-CNN-M has 7% fewer FLOPs than COVID-Net As-
sistant Res-CNN-S, trained on the Verified-Only split, while Res-
CNN-S has much fewer parameters.

We noticed a considerable performance difference (over 0.1
AUC) on the test sets between the model trained on All-Data split
and Verified-Only split. We hypothesized that the root cause is the
more extensive noise of the unverified positive samples in All-Data
split. To verify our hypothesis, we tested the models on the same
test set in All-Data split but filtered — the unverified positive sam-
ples were rejected, left with 63 verified positive samples and 146
negative samples in the filtered test set. Table 4 shows the AUC
scores on the filtered test set. As a result, the scores are close
to the ones evaluated on Verfied-Only split, which is more than 10
points higher than the scores on the unfiltered test set, referred to
Table 3. The observation implies that the unverified positive sam-
ples are noisy and may negatively impact the models trained via
standard supervised learning.

Motivated by deploying the models on different platforms, such
as mobile and web applications, we evaluated the model’s forward
pass latency on different platforms, reported in Table 5. Particu-
larly, we computed the trimmed mean of the latency in 1000 forward
propagation on 1) a workstation (WORKSTN) with x86_64 architec-
ture and Intel Xeon Gold 6230 CPU, 80 cores, 3.9 GHz, 400GB
RAM; 2) a single-board computer (SBC) with aarch64 architecture
and Cortex-A72 CPU, 4 cores, 2.0 GHz, 4GB RAM. According to
Table 5, a model’s latency on the WORKSTN is not necessarily
proportional to the latency on the SBC. For instance, the COVID-
Net Assistant CNN trained on Verified-Only split can perform the
fastest inference on the WORKSTN, but on the SBC, the latency of
COVID-Net Assistant DW-CNN-S is almost half of its. The models
infer fastest on the SBC are COVID-Net Assistant DW-CNN-S/M,
whose FLOPs are strictly fewer than other models. However, for
lightweight models, The impact of fewer Flops on a workstation with
abundant computational resources is not significant because of the
large amount of parallel computation that can be performed in a
deep convolutional neural network.

5 Conclusion and Future Work

In this study, we proposed the initiative of COVID-Net Assistant, a
deep learning-driven system that performs pre-screening of COVID-
19 conditions by processing cough audio. The goal of COVID-Net
Assistant is not to make a diagnosis but to provide an early rec-
ommendation to users on whether they may have signs of COVID-
19 and to seek medical advice or further COVID-19 tests. The
study is purely research and should not be leveraged for medical
advice or diagnosis. However, With effective pre-screening tech-

Table 5: Latency Evaluation Results of COVID-Net Assistant Mod-
els, Format Follows "All-Data Split / Verified-Only Split"

Seed Design Latency WORKSTN (ms) Latency SBC (ms)
CNN 2.4 / 1.72 10.7 / 9.44

Res-CNN-S 2.29 / 2.22 8.76 / 10.6
Res-CNN-M 2.64 / 2.61 11.2 / 12.1
Res-CNN-L 3.24 / 3.05 21.8 / 13.6
DW-CNN-S 2.34 / 2.31 4.94 / 5.39
DW-CNN-M 3.06 / 3.18 6.74 / 6.98
DW-CNN-L 14.0 / 14.1 35.1 / 35.2

niques and recommendation systems, limited medical sources like
RT-PCR tests will gain more usability in the fight against the COVID-
19 pandemic.

Our results show that deep learning algorithms can do well on a
dataset with verified positive samples. We proposed multiple deep
convolutional neural network architectures generated via generative
synthesis [9] with different seed architecture designs. We found
the standard convolution based architecture, namely COVID-Net
Assistant CNN, can achieve dominant representation power on the
dataset with less noise; the lightweight depth-wise separable convo-
lution based architecture, namely COVID-Net Assistant DW-CNN-S,
can achieve the highest efficiency on low-end devices such as a
single-board computer; and the residual block based architecture,
namely COVID-Net Assistant Res-CNN-M, can achieve a great bal-
ance between representation power and efficiency, while the neural
networks are not deep enough to fully leverage the power of resid-
ual connections.

One of the challenges is that the audio samples in the dataset
are scarce. Due to the limited numbers of test data, the AUC scores
with a slight difference are hardly comparable. More training data
is necessary to generalize the model’s target missions and deploy
them in practice. In fact, deep learning algorithms have shown
promising results in many diagnostic tasks with a massive amount
of labeled training data. However, high-quality labeled data in med-
ical diagnosis is expensive to obtain and is always a challenge
in related literature. Fortunately, recent studies have used semi-
supervised learning approaches to leverage the unlabeled data or
weak labels (e.g., [15]). As one of our future research directions,
we will leverage transfer learning and semi-supervised learning al-
gorithms to train the models on larger, crowdsourced datasets and
leverage the unverified labels, such as combining the samples in
COUGHVID [3] dataset and Coswara [4] dataset with Covid19-
Cough dataset [5] currently in use.

The promising AUC scores on the Verified-Only dataset split
also imply a potential pattern in coughing sounds by COVID-19 in-
fection differentiated from other diseases. Hence, another research
direction is leveraging explainable AI techniques to study the region
of interest used in neural networks’ prediction. This could further
help us study and understand the performance of generative syn-
thesis. We hope our research can motivate further study and appli-
cations or even research in biological reasoning.
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