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Abstract

Deep-learning based hockey analysis generally requires automatic
rink localization from broadcast videos. This information is used to
determine the locations of players and the puck, which is important
for further analysis such as puck trajectory and player behaviour.
Models for this task determine the homography matrix used to warp
the frame onto the rink template, or vice-versa. However, training
models with good performance is challenging due to lack of training
data. Augmentation algorithms have been shown to be effective for
different machine learning tasks. Here we propose a set of new
augmentation techniques specifically for the task of homography
estimation to improve the model’s reliability in new situations. To
further improve smoothness and reliability of localization, we take
advantage of refined homography between successive frames sub-
sampled from videos in the inference stages. Results show that the
new augmentation technique along with the smoothing approach
can improve the performance by ∼ 2%.

1 Introduction

Hockey is an exciting fast-paced sport that is watched by millions
of people, and each team constantly strives to improve and out-
play their rivals. In order to study and improve player performance,
teams, coaches, and analysts glean information from watching the
players interact with other players and with the puck. With the ad-
vent of deep learning, it is now possible to automate parts of this
analysis.

An important step of such analysis involves the identification of
player and puck location. As hockey broadcast videos often do not
have camera parameters, such location information must be identi-
fied automatically from the video feed itself. Thus, rink registration
is performed to calculate how pixels in video frames map to the
overhead view of the rink. An example can be seen in Fig. 1, which
shows how an image looks when warped to the overhead view, and
how the overhead template looks when warped onto the image.

Fig. 1: Example of warping a video frame onto the overhead rink
template (and vice versa) using homography.

Most models analyze each frame and output information used
to calculate the homography warp between the overhead rink and
the image frame. However, acquiring ground truth data for this task
is difficult and expensive, and many previous papers do not have
publicly released datasets.

In this paper, we hypothesize that stronger augmentation ap-
proaches can improve the model reliability and accuracy on lim-
ited training data. We also analyze the effect of using a new infer-
ence method to calculate the homography warp between succes-
sive frames subsampled from video. This adds temporal informa-
tion, reduces shakiness, and improves reliability in difficult situa-
tions.

2 Related Works

Sports field registration is a vital component for analysis in many
different sports, and thus different methods have been developed to
perform this task effectively for sports such as soccer, basketball,
tennis, and hockey. In deep learning, the models are trained on

video frames from games in order to perform a homography esti-
mation that can warp the frame onto the overhead field template, or
vice versa.

Traditional homography estimation methods rely on matching
features from pairs of images via methods such as SIFT [1] and
ORB [2], before being used in methods such as RANSAC to cal-
culate the homography [3]. DeTone et al. were one of the first
to utilize deep learning to estimate homography, by using a VGG
based model to estimate the location of 4 corners of one image in
the image space of the other [4]. This can then be converted into a
homography via techniques such as Direct Linear Transform (DLT)
[5] [4].

Since then, many other models have been built for the purpose
of homography estimation, and this includes various models spe-
cialized for sports field registration. Homayounfar et al. use se-
mantic segmentation in order to isolate field marking information to
use in a Markov Random Field [6]. Chen and Little set up a cam-
era pose database with predefined poses, and then they select the
best one compared to features and edge images extracted from the
input image, before refining it [7]. Sha et al. also use a dataset
method, except they use semantic segmentation output rather than
edge images as the input involved in the comparison [8].

Nie et al. use a U-net based approach to estimate the loca-
tion of a set of uniformly spread keypoints, which is then used to
calculate the homography [9]. This keypoint based estimation is
then refined based on feature heatmaps extracted from the image,
alongside the previous frame’s heatmaps [9]. Chu et al. build upon
this approach by replacing the refinement step with better keypoint
estimation based on dynamic filter learning [10].

Jiang et al. use a deep neural network to estimate the loca-
tions of 4 points of the input image onto the sports field template
[11], in a similar manner as [4]. This produces an estimate which is
used to warp the template and act as part of the input for a refine-
ment network, which calculates the relative homography between
the original image and the initial estimate [11]. Shi et al. improve
this approach by warping their dataset images to generate synthetic
images to improve their refinement model [12].

Our model is built upon on the one described in Shi et al. [12]
with some changes and improved augmentation approaches to in-
crease accuracy and reliability of the homography estimation.

3 Method

Our method for homography estimation is a two step approach. First
we use an initial estimator to calculate an initial estimate via the
four-point approach, which was first described in [4]. This initial
homography is then used to warp the overhead template and is then
fed into the refinement model alongside the original input frame.
The refinement model is similar to that in [12], where two separate
branches take in each input. The final output is the location of four
points from one image in the image space of the other, allowing
us to calculate the refinement homography needed to transform the
initial estimate to be closer to the true homography. This refinement
process can be iterated for improved results. Note that we omit
the score branch and instead iterate a fixed number of times for
simplicity. A diagram showing this process can be seen in Fig. 2

The initial estimator and refinement model were trained sepa-
rately, using AdamW optimizer, smooth L1 loss, an initial learning
rate of 0.0001, and weight decay of 0.3. There is a lack of publicly
available datasets for hockey, so we use a 4501 image training set
provided to us from Stathletes.

For training the refinement model, we generate synthetic data
from our initial training in a similar manner as [12]. To generate
a synthetic image, a rectangle of 4 points is taken on an original
dataset image, and each point is perturbed. The resulting perturbed
points and the original 4 points can be used to setup a homography
matrix to warp the image to simulate zoom and translation.



Fig. 2: Pipeline of the process, showing the initial estimator and the
refinement model. The iteration of the refinement model has been
omitted for clarity.

In our case, we make some changes during this process com-
pared to Shi et al. [12]. We use the homography matrix generated
from the perturbation along with the ground truth matrix of the train-
ing data to warp the template to use as the edge image training
input, while keeping the original video frame as the frame input. We
also alter the perturbation amounts due to our images being of a
different size. This process can be seen in Fig. 3.

Fig. 3: Example Pertubation. On the left image, the blue rectangle
shows an example set of 4 point chosen and the yellow rectangles
show the possible perturbation locations. The right image shows
how the original edge image (green) is perturbed into a synthetic
edge image (red). The model is now fed the red perturbed edge
image and the video frame, and tries to calculate the homography
warp between them.

Additionally, rather than only generating 8 synthetic images per
original dataset image as in [12], we dynamically generate a differ-
ent synthetic edge image each epoch, to better simulate the vast
potential rink orientations that are possible in hockey.

Our main contribution will be described in the following two sec-
tions, describing the augmentation improvements and the temporal
video analysis we use.

4 Augmentation Improvements

Having a wide variety of training data is important to ensure that
models don’t overfit. However, preparing ground truth data is an
expensive and time-consuming task. For this reason, various aug-
mentations should be used to extend the training dataset, and thus
improve the model’s ability to generalize and improve results on new
data.

As mentioned earlier, our process generates new synthetic
edge images from each training set image each epoch. Before
this process however, we also augment each training image via
strong zoom, flip, and color augmentations. The homography warp
needed to perform the zoom and flip augmentation is also calcu-
lated and used to alter the ground truth homography to ensure that
it still matches the new augmented image. This is done randomly
each time, and thus, coupled with the synthetic data generation, en-
sures that the model is trained on an extremely diverse training set.
This added augmentation proved to be especially useful in cases
where the camera zoomed in, which was previously a difficult case
to manage. The accuracy increase these augmentations added can
be seen in Table 1. Note that although the baseline is based on
[12], dataset differences and potential differences in implementa-
tion make it difficult to perform a direct comparison.

We also utilize our own variant of copy-paste augmentation to
further augment our images. The original copy-paste augmentation
described in [13] enhances instance segmentation training by copy-
ing instances from other images and pasting them onto the current

Table 1: Accuracy increases due to added homography and color
augmentation on refinement model.

Model IoU (part) IoU (whole)
Refined Model (base) 96.9% 86.4%

Refined Model (with augmentation) 97.1% 87.8%

image, while altering the ground truth segmentation to account for
the newly added instances. In our case, we copy instances of play-
ers from one image onto another to simulate natural occlusion of
rink features such as lines, and to further augment the training data
to improve model generalization. Current results show an increase
in accuracy in both the initial estimator and the refinement model
thanks to this augmentation, as seen in Table 2.

Table 2: Accuracy increases due to copy-paste augmentation on
both initial estimator and refinement model.

Model IoU (Part) IoU (Whole)
Initial Estimator (no copy-paste) 96.0% 86.2%

Initial Estimator (with copy-paste) 96.2% 86.3%
Refined Model (no copy-paste) 97.2% 87.9%

Refined Model (with copy-paste) 97.3% 88.1%

5 Temporal Video Frame Analysis

Another aspect analyzed was the prospect of using the refinement
model to calculate the homography between different frames in
video. The refinement model is trained to identify the homogra-
phy between a perturbed edge image and a video frame. The edge
image from a previous frame can be considered to be similar to a
perturbed edge image as long as the sampling rate of the frames
from the video is reasonably high. Thus, we can use a different
inference method where the refinement model is used to identify
homography between successive subsampled frames from a video.
This inference process can be seen in Fig. 4, where the refinement
model can be used to calculate homography for each subsequent
frame.

Fig. 4: Temporal video inference method. After the first frame ho-
mography is calculated, we can use the refinement method on each
previous frame to calculate the homography needed to get from the
previous frame to the current frame.

The benefits this approach offers include inference speed. Un-
like the previous approach which required both the initial estimator
and the refinement model for each frame, this method only requires
the refinement model after the first frame. Furthermore, this in-
troduces temporal information to the process to improve smooth-



ness and reduce shakiness of the resulting homography output for
videos, as the model directly infers the difference between frames.

Finally, this improves reliability. The problem the initial estima-
tor solves involves a much larger warp, as it involves warping from
camera view to the overhead view. This is a harder problem to
solve, and thus is more susceptible to unseen cases before. An
example can be seen in Fig. 5, where the usual initial estimator
plus refinement model is unable to estimate the homography well.
This is due to the the initial estimator being unable to calculate a
good homography for this case, and the refinement method being
unable to fix the error as it is too far off. The refinement model in
the temporal method solves an easier problem of just calculating the
homography warp between the previous frame and the current one,
and doesn’t need to rely on the initial estimate for this case. Thus,
in the temporal method we skip the initial estimator when dealing
with this difficult frame, as we can compare the current frame with
previous frames instead. Because of this, the temporal method is
not as affected by this case.

Fig. 5: Example where the temporal frame method is more reliable.
The top shows a case where the initial estimator is unable to cal-
culate the homography well due to the zoom and the visual effect
covering part of the screen. The bottom image shows how the tem-
poral frame method is unaffected as it calculates the warp from the
previous frame to the current one, which is easier to do.

6 Future Work

Future work with this line of research would be to intensively investi-
gate the effects of these augmentations and the synthetic data gen-
eration with a more thorough ablation study. There is likely further
optimization that can be made regarding these techniques used to
artificially increase the dataset for better model generalization.

As well, more development on the temporal frame model could
be done to potentially take into account more that just the previous
frame. For example, several past frames can be used, along with
their homography information if available, in order to enhance the
homography estimation for the current frame.

7 Conclusion

We have investigated the benefits of adding stronger augmenta-
tions in the training process of hockey rink localization models in
order to improve generalization. We have also investigated the ef-
fects of running a refinement model to calculate the homography
between successive frames subsampled from video, in order to pro-
duce smoother results and handle more difficult cases. The results
have increased accuracy, and the qualitative effects can be seen
in the model’s ability to better handle zoomed-in frames and other
more difficult to handle cases. Further work can be done to optimize
this approach even more.
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