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Abstract

Computer vision and machine learning are playing an increasingly
important role in computer-assisted diagnosis; however, the appli-
cation of deep learning to medical imaging has challenges in data
availability and data imbalance, and it is especially important that
models for medical imaging are built to be trustworthy. Therefore,
we propose TRUDLMIA, a trustworthy deep learning framework for
medical image analysis, which adopts a modular design, lever-
ages self-supervised pre-training, and utilizes a novel surrogate
loss function. Experimental evaluations indicate that models gener-
ated from the framework are both trustworthy and high-performing.
It is anticipated that the framework will support researchers and clin-
icians in advancing the use of deep learning for dealing with public
health crises including COVID-19.

1 Introduction

COVID-19 pandemic continues to affect lives around the world.
Medical imaging, including chest X-rays, plays a key role in
diagnoses. Using computer vision and deep learning, computer-
assisted diagnosis has shown great potential in this field [1, 2].
Moreover, improving on the task of COVID-19 chest X-ray classifi-
cation may lead to advancements for similar tasks. However, three
main issues have been identified in this field.

Limited data Datasets for medical imaging, especially for
novel diseases such as COVID-19, are typically small compared
to natural image datasets, making model training more difficult.
As such, medical feature learning is commonly conducted through
transfer learning [3], with large-scale supervised learning followed
by down-stream fine-tuning. This approach, however, is limited by
the relevance of the large-scale data to the downstream task, as
well as label quality. Consequently, self-supervised learning (SSL)
has been proposed and has shown comparable performance to
state-of-the-art supervised models [4, 5]. The methodology behind
contrastive self-supervised learning, which aims to learn feature
representations by comparing closely related data samples to each
other, is especially relevant, as medical images are extremely
similar and can appear identical to untrained eyes.

Class imbalance Aside from small datasets, another important
issue for medical imaging is class imbalance, where there are
significantly more negative (benign) data samples than positive
(malignant) ones. Thus, models are heavily biased toward the
majority negative class and exhibit poor predictive performance
for the minorty positive class, which is often more important for
medical diagnosis. A way to combat this during the training process
is to maximize the AUC (area under the ROC curve) instead
of minimizing cross-entropy (CE) loss [6]. This is suitable for
imbalanced data, as maximizing AUC aims to rank the prediction
score of positive samples higher than negative ones. However,
AUC maximization is more sensitive to model changes, making it
less practical than minimizing CE loss [6].

Low trustworthiness In the context of medical AI, trustwor-
thiness of predictions is important to both patients and clinicians.
An existing problem is that deep neural networks optimized with
the standard CE loss function tend to be overly cautious for the
minority class, while being overconfident for the majority class [7].
This problem is especially hard to deal with, as model trust quantifi-
cation is a relatively new and undeveloped area. Existing literature
typically focuses on evaluating the trust for a prediction from a
single data sample [8, 9]; therefore, these approaches often suffer
from various weaknesses, including low interpretability and being
limited to Bayesian networks [10]. To deal with these limitations, a

concept of “question-answer" trust has been introduced [11], where
the trustworthiness of a model is determined by its behaviour
when answering questions, such that undeserved confidence is
penalized while well-placed confidence is rewarded. Through this
method, a simple scalar “trust score" is introduced, such that a
higher trust score indicates a more trustworthy model. To remedy
the problem of low model trust, we use Deep AUC Maximization
to replace traditional CE loss with the robust AUC min-max margin
loss [6].

To address the aforementioned issues, we propose TRUDLMIA,
a simple and trustworthy deep learning framework for medical
image analysis. Both supervised and self-supervised learning are
combined for effective medical image feature learning and a novel
surrogate loss function is adopted to build high-performing, high-
trust models. The framework adopts a model-agnostic modular
design for generalization capabilities.

In summary, our contributions and findings are three-fold:
• We propose a general deep learning framework for medical

image analysis which can be used to build high-performing,
high-trust models;

• We show that fine-tuned models with self-supervised pre-
training surpass supervised ones for COVID-19 classifica-
tion, including state-of-the-art deep learning models designed
specifically for the task;

• AUC maximization with margin loss leads to more effec-
tive feature learning and higher trustworthiness, effectively
dealing with the problems of class imbalance and prediction
under/over-confidence.

2 Literature Review

In computer vision, SSL has gained popularity for learning rep-
resentations, requiring no labels unlike supervised training. The
SSL approaches can be categorized into generative or con-
trastive/discriminative. Two mainstream discriminative approaches,
momentum contrast (MoCo) [5] and SimCLR [4], learn features by
comparing data samples to each other. MoCo approaches this task
through a mechanism analogous to dictionary look-up. Through
a contrastive loss function, a visual representation encoder is
trained by matching encoded queries to a dictionary of encoded
keys. SimCLR, however, focuses on the use of data augmentations
on the same image. The SimCLR aims to minimize the distance
between data augmentations of the same image, while maximizing
the distance between different images.

Contrastive learning methods have been shown to be effective
in medical contexts. The MoCo model has been trained on a chest
X-ray data-set to produce the MoCo-CXR model [12]. Subsequent
fine-tuning experiments show that models initialized with MoCo-
CXR outperformed non-MoCo-CXR counterparts, especially on
limited training data. Experiment on a dataset that is unseen during
pre-training also shows that MoCo-CXR pre-training has good
transferability across chest X-ray datasets and tasks.

In dealing with the COVID-19, the SSL methods exhibit advan-
tages over supervised counterparts because of limited data with
labels. In [13], the authors showed results that self-supervised
pre-training using MoCo led to better results than supervised
pre-training for screening COVID-19 patients. In [14], the authors
pre-train the MoCo model on chest X-rays to learn more gen-
eral image representations to use for prognosis tasks, differing
from previous work in that existing solutions leverage supervised
pre-training on non-COVID images, an approach limited by the
difference between the pre-training data and the target COVID-19



patient data. It thus achieves comparable prediction accuracy to
that of experienced radiologists analysing the same information.
SimCLR has also been applied for medical AI. In [15], the authors
propose multi-instance contrastive learning, a novel approach that
generalizes contrastive learning to leverage special characteristics
of medical image analysis. They observe that SSL pre-training
on ImageNet, followed by additional pre-training on unlabeled
domain-specific medical images, improves classifier accuracy [15].

The quantification of model trustworthiness is a new and
undeveloped area, compared to other deep learning performance
metrics, such as robustness [16], efficiency [17], or explainability
[18]. Existing work typically focuses on evaluating trustworthiness
for a prediction made on a single data sample, either through
measuring agreement with a nearest-neighbour classifier [8] or
estimations for model uncertainty [9]; however, these approaches
often suffer from severe weaknesses. Due to returning distributions
over the space of possible predictions, their trust quantification is
often highly complex, hard to interpret, or limited to certain neural
networks like Bayesian ones [10]. To deal with these limitations,
a concept of “question-answer" trust has been introduced in [11],
where the trustworthiness of a model is determined by its behaviour
when answering questions correctly or incorrectly. Consequently,
undeserved confidence is penalized while well-placed confidence
is rewarded. Through this method, a simple scalar “trust score" is
introduced to express question-answer to practice.

In medical imaging, AUC score has become a common metric
to compare deep learning methods, and directly maximizing
AUC score is a proven method of improving model performance.
Furthermore, proponents of AUC maximization claim that it is
optimal for handling imbalanced data, especially for tasks where
the positive class is important, since maximizing AUC aims to rank
the prediction score of any positive data higher than any negative
data [6]. An ongoing area of study is the design of surrogate loss
functions for AUC maximization, with the standard naive approach
being a simple pairwise surrogate loss based on the definition of
the AUC score [19]. However, this suffers from severe scalability
issues and sensitivity to noise. To alleviate this, the authors of
[6] propose AUC min-max margin loss, a novel surrogate loss
function for maximizing AUC score, which uses a squared hinge
function (common in margin-based SVM classifiers). Deep AUC
Maximization (DAM) with AUC min-max margin loss has shown
state-of-the-art results on various difficult tasks with unbalanced
data, including medical imaging tasks such as CheXpert [20] and
melanoma detection.

3 Methodology

3.1 Framework Design

The proposed TRUDLMIA framework comprises three main
modules: i) generic learning through large-scale supervised
pre-training using natural images (ImageNet [21]), ii) adapted
learning through large-scale self-supervised learning using natural
images or domain images without labels, and iii) targeted learning
through supervised fine-tuning on downstream tasks using a
labeled dataset (see Fig. 1). Conducting supervised pre-training
(module i) before self-supervised pre-training (module ii) means
less epochs of the latter are required, making the framework much
more computationally efficient as SSL can be very costly. The three
modules are built upon each other in order to build trustworthy
models with optimal performance, despite the fact that training
data on target tasks are limited in quantity and imbalanced. For
validation, the model achieving the best validation accuracy is
saved and evaluated on the unseen test split.

We study two main-stream SSL approaches, namely SimCLR
and MoCo, on their performance and trustworthiness as pre-
training for our framework. In the comparison below and ablation
studies, we mainly use SimCLR, as we found that it performed
better than MoCo for the given task (results shown in Section
4.4). We use AUC maximization with AUC min-max margin loss
in module iii) of the TRUDLMIA framework, which has several
benefits over traditional cross-entropy (CE) loss. Most importantly,
AUC maximization is better at handling imbalanced data [6], being
more resistant to trust issues caused by CE loss (over-confidence
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Fig. 1: Overview of the proposed deep learning framework.

in the majority class and over-cautiousness in the minority class [7]).

The TRUDLMIA framework adopts a plug-in architecture in the
computation of image features. In our study, we adopt main-stream
deep convolutional neural network (CNN) models, i.e., ResNet [22]
and DenseNet [23], which can be replaced with other network archi-
tectures. The two self-supervised learning (SSL) approaches com-
pared in module ii) are also replaceable. Likewise, the AUC maxi-
mization used in the module iii) can be replaced with alternative loss
functions.

3.2 Trust Score Computation

We compute trust scores for models based on a method introduced
in [11]. Given a question x, an answer y with respect to a model
M, such that y = M(x), and z representing the correct answer to x,
we then use Ry=z|M to denote the space of all questions where the
answer y given by model M matches the correct answer z. Likewise,
we use Ry̸=z|M to denote the space of all questions where the an-
swer y given by model does not match the correct answer. We also
define the confidence of M in an answer y to question x as C(y | x).
Thus, question-answer trust of an answer y given by model M of a
question x, with knowledge of the correct answer z, is defined as

Qz(x,y) =
{

C(y | x)α , if x ∈ Ry=z|M
(1−C(y | x))β , if x ∈ Ry ̸=z|M ,

with α and β denoting reward and penalty relaxation coefficients.

To integrate the trust score computation into the models trained
through our framework, we first calculate an optimal threshold value
by maximizing F1-score on a validation split. Data samples are clas-
sified using the threshold, and outputs are then normalized such
that negative predictions are scaled between 0 and 0.5 and posi-
tive predictions are scaled between 0.5 and 1. This allows us to
express model confidence, which is then used to compute the trust
score according to the question-answer method introduced above.
We use α = 1 and β = 1, equally rewarding well-placed confidence
and undeserved overconfidence. This is done for all of the positive
samples in the unseen test split. Finally, an overall positive class
trust score for the model is determined by calculating the mean of
the computed individual scores.



4 Experimental Results

4.1 Dataset

Table 1: Data split for COVIDx 8B

Split Negative Positive Total

Train 13,793 2,158 15,951
Test 200 200 400

Various datasets are used in TRUDLMIA modules. In super-
vised pre-training (module i), the deep CNN models are pre-trained
on the ImageNet [21] dataset. In self-supervised learning (module
ii), the MoCo model is pre-trained on both ImageNet and MIMIC-
CXR dataset [24]. The SimCLR model is pre-trained on the Ima-
geNet dataset. For the downstream task (module iii), the COVIDx
dataset (Version 8B) [25], a small dataset with a high class imbal-
ance, is used for fine tuning the models end-to-end. The dataset
training/testing split is shown in Table 1). All models built in our
experiments are evaluated on the same test subset.

4.2 COVID-CXR-SSL

Our top-performing model, dubbed COVID-CXR-SSL, demon-
strates both high performance and trust score (see Table 2). The
model uses ResNet in module i) and SimCLR in module ii), followed
by fine tuning on the COVIDx dataset in module iii).

We compare the COVID-CXR-SSL with COVID-Net CXR-2
[26] and COVID-Net CXR-3 [27], high-performing models that
have been designed for the same dataset. COVID-Net CXR-2
uses machine driven design to automatically discover highly
customized macro/microarchitecture designs. COVID-Net CXR-3
employs a self-attention mechanism (MEDUSA). Both models are
state-of-the-art, consistently surpassing high-performing models
on various medical imaging tasks [27]. Our COVID-CXR-SSL
model outperforms both COVID-Net CXR-2 and COVID-Net CXR-3
across all metrics on COVIDx V8B. It is noted that the COVID-Net
CXR models use input images at a resolution of 480× 480, while
our model uses a resolution of only 224×224.

Table 2: Model performance and trust scores for COVID-Net CXR-
2, COVID-Net CXR-3 and COVID-CXR-SSL

Model Precision Sensitivity Trust

Pos. Neg. Pos. Neg.

COVID-Net CXR-2 0.970 0.955 0.956 0.970 -
COVID-Net CXR-3 0.990 0.975 0.975 0.990 -
COVID-CXR-SSL 1.000 0.980 0.980 1.000 0.964

4.3 Ablation Study

We conduct an ablation study to investigate the contribution of
different modules in the TRUDLMIA framework. We start with
fine-tuning a pre-trained ResNet on the COVIDx dataset as a
baseline (model “SL"). The pre-trained ResNet model is also used
as a backbone architecture for training with the SimCLR architec-
ture followed by fine-tuning it using the CE loss function (model
“SL+SSL"). Furthermore, the SimCLR model is also fine-tuned
using the AUC maximization loss function (model “SL+SSL+AUC").
Both the “SL+SSL" and “SL+SSL+AUC" models are fine tuned
for 200 epochs. Table 3 lists the performance metrics and trust
scores computed on the models. We obtain an increase of about
6% on precision and sensitivity metrics and 4% on trust score
from the adoption of SSL. AUC maximization further improves the
performance while improving trust score slightly.

Table 3: Ablation study on model performance and trust scores for
different model architectures

Architecture Precision Sensitivity Trust

Pos. Neg. Pos. Neg.

SL 1.000 0.885 0.870 1.000 0.918
SL+SSL 1.000 0.939 0.935 1.000 0.952
SL+SSL+AUC 1.000 0.952 0.950 1.000 0.954

4.4 Selection of SSL Plug-in

Given the choice of different SSL approaches, we conduct a com-
parison with MoCo architecture in the TRUDLMIA framework. After
fine-tuning for 100 epochs, we select the best models for evalua-
tion and provide their performance metrics in Table 4. The SimCLR
based model outperforms the MoCo-based one across all metrics.
Our results also indicate that pre-training with natural images on
ImageNet is more effective than pre-training on large-scale medical
image dataset, MIMIC-CXR, despite the latter being more relevant
to the downstream task. [24].

Table 4: Model performance and trust scores for different SSL plu-
gins

SSL plugin Precision Sensitivity Trust

Pos. Neg. Pos. Neg.

MoCo (MIMIC-CXR) 0.995 0.896 0.884 0.995 0.909
MoCo (ImageNet) 0.998 0.934 0.930 0.998 0.937
SimCLR (ImageNet) 1.000 0.952 0.950 1.000 0.954

5 Conclusion

In this work, we propose TRUDLMIA, a trustworthy and high-
performing modular deep learning framework for medical image
analysis, alleviating the prevalent issues of limited data, class
imbalance, and low trustworthiness. The framework comprises
large-scale supervised and self-supevised learning, as well as fine-
tuning on downstream tasks in a supervised fashion. Through a
highly successful assessment on the COVIDx dataset, TRUDLMIA
framework proves its effectiveness for medical image analysis.

The proposed TRUDLMIA has shown great potential as a deep
learning framework for medical image analysis due to its efficacy
and simplicity. Models trained through the framework significantly
surpass traditional supervised models, including the state-of-the-art
COVID-Net CXR-3. Our trustworthy model, COVID-CXR-SSL, will
be made publicly available. We hope the TRUDLMIA can contribute
to the ongoing fight against the pandemic and establish a viable
path for future ones.

Our future work includes exploring the explainability of the mod-
els built using the framework, e.g., generating saliency maps with
methods such as Grad-CAM [28], in collaboration with radiologists.
We are interested in investigating the use of the latest Vision Trans-
formers [29] to replace the CNNs used in the TRUDLMIA frame-
work. Furthermore, the use of Generative Adversarial Networks
(GANs) [30] can be explored for augmenting dataset size, as well
as its impact on model trust.

6 Potential Societial Impact

Data collection for this study was conducted ethically from public
and approved data. While promising, our work is by no means a
production-ready solution. Thus, in all of our published files, a dis-
claimer is included, recommending prospective COVID-19 patients
to seek help from professional medical practitioners.
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