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Fig. 1: REEM-C Humanoid Robot, with RGB-D camera shown on
forehead

Abstract

Robots require innovative, intelligent systems to effectively interact
with potentially multiple humans simultaneously. A consortium of
unique systems may be necessary to properly understand and re-
spond to a variety of human behaviours. This extended abstract
presents relevant imaging systems, including visual voice activity
detection, gaze estimation, and identification of angular positions of
humans relative to the robot. We show that video data alone pro-
vides a framework to interact with humans which is of high impor-
tance in multi-modal robotics systems. Data collection, processing,
and initial results for these algorithms are presented.

1 Introduction

Human-robot interaction systems often involve using either audio,
video, or both in tandem to facilitate tasks such as working in as-
sembly workspaces [1] or communicating with human subjects [2].
There is a need to employ these systems for the specific purpose
of engaging in conversations with one or more humans present. A
robust set of imaging algorithms are therefore required to allow for
this functionality.

Voice activity detection is easily accomplished when audio in-
formation of present interlocutors is available. The applications of
visual voice activity detection involve scenarios when audio is not
available due to hardware restrictions, or is unreliable due to noisy
scenes or sounds that are recorded simultaneously. Additionally,
gaze estimation will be important to identify important conversa-
tional cues and find where interlocutors are directing their attention.
Alongside a method to estimate the angle of the interlocutor relative
to the robot, a framework to allow for a complete human-robot in-
teraction can be developed. These problems are often approached
with computationally heavy deep learning models trained on exten-
sive datasets [3, 4], and therefore require a lightweight, classical
computer vision alternative.

All systems are designed for the REEM-C Humanoid Robot,
which utilizes a RealSense RGB-D camera. Due to bandwidth limi-
tations on the ROS network, these systems are designed for a feed
of 15 fps at a resolution of 640 x 480. An image of the REEM-C is
shown in Figure 1.

2 Visual Voice Activity Detection

Conversational scenarios with a humanoid robot will require identi-
fying when humans are speaking and when they are silent. Visually,
this can be done by identifying features that correlate to speech.
Initial data is collected by recording audio and video simultaneously
of human conversations from the REEM-C. Audio is recorded in 2

Fig. 2: Detected facial landmarks shown in red (left), and mouth and
eye regions shown as binary masks (right)

channels, at a standard of 44.1 kHz, and video frames are recorded
directly from the REEM-C camera.

To understand which features may correlate with speech, audio
data is broken into frames of 1/15th of a second, to match the data
extracted from video. Features are directly extracted from frames
using facial landmarks from the DLIB detector, which is commonly
used in the literature [5]. These landmarks allow for measurement
of important characteristics from detected faces, such as those of
the mouth or eye areas. Figure 2 shows detected facial landmarks
on a subject, and the extracted the mouth and eye regions as binary
masks.

Features that may be related to speech are extracted on each
frame, which include but are not limited to, mouth height, mouth
area, Sobel filter gradients, and HSL information from the mouth ar-
eas. A common method to process features includes using a sliding
window approach, which moves frame-by-frame, spanning the se-
quence of collected data. To mimic concepts used in audio signal
processing, metrics such as the mean and the power of the window
[6] are used to identify behaviour that is of interest. For instance,
we suppose that as a person speaks, the area of their mouth will
be larger than when they do not speak, which will be reflected in
the mouth area signal. The average of the sliding windows is taken
for video data, time aligned with audio data, and compared to the
audio frame power. For a given window of data, the mean and the
power of the window are computed as in Equation 1 and Equation
2. A window size of N=5 frames is chosen for this experiment.

Mean(x) = (1/N)
N

∑
n=1

x[n] (1)

Power(x) =
N

∑
n=1

x2[n] (2)

A correlation matrix is generated to better understand which vi-
sual features correlate with two channel audio power. These fea-
tures are normalized by the subject’s mouth size, to accommodate
for different facial features between subjects. An example correla-
tion matrix is shown in Figure 3.

Noticeably, certain features have some correlation with audio
power, and may be used in tandem to identify periods of voice ac-
tivity. Lightness pixels indicates the number of pixels in the mouth
region below the average lightness of the mouth area detected in
the first frame. This feature’s extraction is shown in Equation 3, on
every frame.

Figure 4 and Figure 5 show window averages for lightness pixels
of the mouth region, and the area of the mouth, respectively. Green
windows indicate periods of voice activity.



Fig. 3: Sliding window feature means in correlation matrix with audio
frame power

Fig. 4: Sliding window average of lightness pixels feature. Green =
voice activity, White = no voice activity

lightness pixels =
∑

L
l=1 Pl < T

mouth area
Pl = l-th pixel of mouth area, in the lightness channel
T = (1/L) (sum of all pixel lightness in mouth of first frame)

(3)

The threshold T is updated every 10 seconds to account for
possible changes in lighting or positioning of the subject. It can be
seen that the lightness feature corresponds well with windows of
voice activity. A similar pattern is seen when looking at the power of
the mouth height measurements. We hypothesize that a fluctuation
of values within the periods of voice activity are a result of the pro-
nunciation of different phonemes, requiring the mouth to open and
close accordingly.

A measure is used in Equation 4 to capture the increase in val-
ues of these features by modeling the data windows as Gaussian
distributions [7]. Voice activity is classified as per the following con-
ditions from [7] once the mean and power of each frame is com-
puted. Q is the probability of a Gaussian random variable given the
window mean and standard deviation, and PFA (probability of false
alarm) is set to 1%.

Mean(x)> α1 and Power(x)> α2

α1 =

√
σ2

N
Q−1(PFA)

α2 = σ
2Q−1(PFA)

(4)

This algorithm is applied to a test video with two subjects con-
versing and generates results with the lightness pixels feature as
shown in Figure 6.

Fig. 5: Sliding window power of mouth heights feature. Green =
voice activity, White = no voice activity

Fig. 6: Voice activity detection estimates, in blue, visualized against
annotated windows of speech for speaker 1 and speaker 2 in con-
versation. Green = voice activity, White = no voice activity

The estimates are dense in periods of speech, indicating the
algorithm is able to isolate distinct periods of voice activity for both
speakers. The use of other features may be key in reducing false
positives and better capturing the entire window of voice activity
when a subject speaks.

This algorithm is also functional online, and accommodates for
new subjects entering or leaving the field of view of the robot.

3 Gaze Estimation

Gaze is estimated using binary masks on each half of the eye, for
both eyes. For the left eye for instance, a binary mask for all pixels
enclosed by points (36,37,41) and (38,39,40) are extracted. The
amount of sclera present in either half of the eye indicates where
the iris may be placed [8], thereby estimating the direction of the
subject’s gaze. This amount of whiteness in the eye can be mea-
sured via the average lightness in the eye halves in the HSL space.
The ratio of lightness in the left half of the eye to the lightness in
the whole eye is computed, for both eyes. The same is done for the
right half of the eyes, and then the two are subtracted to generate
a difference in lightness for both halves of the eyes. This is further
explained in Equations 5, 6, 7, 8 and 9.

Leye,Lhalf =
avg. lightness in left half of left eye

avg. lightness in left eye
(5)

Reye,Lhalf =
avg. lightness in left half of right eye

avg. lightness in right eye
(6)



Fig. 7: Gaze ratio plotted against annotated windows of gaze. Red
= gaze to the left, blue = gaze to the right, and green = gaze directed
forward

Leye,Rhalf =
avg. lightness in right half of left eye

avg. lightness in left eye
(7)

Reye,Rhalf =
avg. lightness in right half of right eye

avg. lightness in right eye
(8)

gaze ratio =(Leye,Lhalf)+(Reye,Lhalf)

− (Leye,Rhalf)− (Reye,Rhalf)
(9)

This gaze ratio is extracted on every frame, and checked against
determined thresholds to identify if the person is looking to their
right, left, or forward. Figure 7 shows the gaze ratio for a test video,
with annotated windows for where the subject’s gaze was directed.

From the test data, hard thresholds are imposed to determine
the subject’s gaze, as shown in Equation 10.

gaze direction =


left i f gaze ratio > 0.5
right i f gaze ratio <−0.5
forward else

(10)

4 Interlocutor Angle Identification

Allowing for realistic conversations also involves identifying where
exactly the speakers are, in terms of angular displacement relative
to the robot. This can be done by using the RGB-D camera’s depth
information, combined with the location of the subject’s face in the
2D image, to triangulate their position. The location of the subject’s
face is taken as the average of the coordinates of the landmarks
that outline the face. This is demonstrated in Figure 8.

This vision system opens up the possibility of orienting the robot
towards the person who is detected to be talking, in a way that repli-
cates natural human behaviour. When head and torso re-orientation
is performed, or the robot is made to step, compensation is applied
to resolve the relative interlocutor angle to an absolute coordinate
system.

5 Discussion

All three systems must work together to facilitate a more com-
plete human robot interaction scenario. Each present subject in the
scene is characterized on every frame by their voice activity status,
their gaze, and their angle relative to the robot. This information is
transmitted through the ROS network, which allows for a framework
to be developed for interacting with one or more subjects.

Fig. 8: Identification of interlocutor angle using depth information

There is a large potential for using the extracted information
for the purposes of human-robot interaction and conversation [9–
11], including gaze following, implementing conversational cues and
more.

All of this can be accomplished without audio functionality avail-
able, however, to allow for real conversation with humans, audio is
desirable. Algorithms for sound source localization [6] can be used
to correct for scenarios where faces are undetected, masked, or
outside the field of view for the purposes of voice activity detection.
Audio also opens up the potential of using speech recognition and
chat functionalities to augment the human to robot conversation. Di-
rection of arrival estimates using audio can also be used to correct
for errors in visual voice activity detection, by increasing confidence
in estimates of who is speaking, or verifying false positives.

6 Conclusion

In conclusion, three unique imaging systems are proposed to better
facilitate human-robot interaction. Given good accuracy on these
algorithms, they can be synthesized to allow for the REEM-C to
intelligently interact with multiple humans simultaneously.
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