
Automated search for optimal convolutional neural network factorization
Frank Mokadem Vision and Image Processing Lab, University of Waterloo
Alex Wong Vision and Image Processing Lab, University of Waterloo
Email: {fmokadem, alexander.wong}@uwaterloo.ca

Abstract

Deep Neural networks (DNNs) are the state of the art technique
when it comes to artificial intelligence tasks relating to computer vi-
sion. Usage of DNNs is wide spread across multiple industries, and
entertainment. Most notably is the use of Convolutional Neural Net-
works(CNNs) architectures for object detection and classification,
and even more recently information retrieval. However, one down-
fall of CNNs is their computational cost, even on trivial tasks. The
reason for such high computational cost lies in the high flop num-
ber of kernel convolution, the core operation which is built upon a
CNN. Hence presenting the need for compression of floating num-
ber information in CNNs. In this work we explore the techniques of
CNN compression using tensor decompositions. Furtheremore, we
aspire to build an automated tool to execute a grid search through
the space of all possible factorizations of a CNN and pick an optimal
compressed network representation with respect to performance re-
quirements.

1 Introduction

In Deep learning applications for computer vision, the state of the
art is to use convolutional layers. Convolutional layers are kernels
(weighted sum on regions of the image) that are applied on input
images. These layers are mathematically equivalent to linear maps
(convolutional layer is linear, non-linearity is introduced elsewhere
on Neural Networks) between the input image and the output image.
The convolution of an input image via a kernel is a multilinear map.
Indeed, because this is a point wise operation, i.e. operating on
each pixel at a time, and is a weighted sum of the image pixels. It is
natural then to represent these operations using the mathematical
object: tensor. Similar to a matrix, in a given basis a tensor is a
tabular description of a multilinear relationship represented with an
n-dimensional array. Also similar to the matrix case, there exists
decompositions that reduce a tensor into a lower order (i.e. lower
sizes in each of the n dimensions). We are interested in the Tucker
decomposition (TD) that decomposes a tensor into a core tensor
and n matrices. The final result is given in (1).

X = G×1 U(1)×2 U(2)×3 ...×N U(N) (1)

Where X is the original tensor. G is the core tensor, and
U(1),...,U(N) are the matrices. ×i denotes the mode product of a
tensor by a matrix along its i’th dimension.

2 Automated grid search

In this work and following advancements we are building an auto-
mated grid-search tool to systematically explore the space of possi-
ble factorization configurations of a CNN while maintaining a set of
performance requirements imposed by the the user.

1 illustrates the flow of operations in the automated grid search
tool. A user provides a trained network, i.e. architecture and pa-
rameters, represented in tensor format and specifies a set of per-
formance requirements. Mainly, a max cut-off for floating number
memory footprint and a min cut-off in loss of network accuracy. The
user will also provide the train and test data used to train the net-
work, and evaluate its performance.
The automated grid search tool will generate a search space of pos-
sible tensor factorizations that respond to the memory cost require-
ment and subsequently build, train and test a sequence of factorized
neural networks evaluating every one if it satisfies the user perfor-
mance requirements. Finally, should the tool find a successful fac-
torized network, it outputs its tensor representation.

Fig. 1: Flow chart of automated grid search tool.

3 Network factorization and evaluation of perfor-
mance

We study the difference in accuracy and flop counts for two neu-
ral network architectures. ResNet50 [1], and AlexNet [2]. Both
networks trained and tested on the imagenet data set [3]. These
preliminary results are referenced from the work of ruihangdu [4].
The tensor decomposition and network factorizations tasts are im-
plemented using the Tensorly framework [5]. The theoretical frame-
work for tensor decomposition for purpose of factorization of neural
network is based on the discussion and theoretical findings in [6]
Choice of AlexNet and ResNet50 is driven by difference in network
size. We try to conclude if there is a pattern of effect on error when
tensor decomposition is used.

We observe a cost reduction of an average two fold for the two
networks, coupled with a drop in accuracy of around a unit per-
centage. These results do confirm our conjecture that the Tucker
decomposition induced error will affect accuracy of prediction. The
choice to opt for this compression relies on the task and business
requirement in hand, because in reality a unit percentage drop in
accuracy could very well be unacceptable for some applications,
especially when the deployment of the network is on a large scale
and for continuous usage.

Table 1: accuracy loss after uniform tucker decomposition on
AlexNet [2] and ResNet50 [1]. Training and tests performed using
imagenet [3]

Network accuracy drop drop in flops
in convolutions
(Giga)

AlexNet 1.19 .86
ResNet50 0.48 2.3

4 Conclusion

It is worth noting that Tucker Decomposition does offer a compu-
tational advantage that could be exploited for edge devices requir-
ing deep learning technologies. However, a study of induced error
on prediction power of the model must be conducted to observe
if the trade off is still within business requirement. On the other
hand, Tucker decomposition only performs approximation on the lin-
ear components of the network, hence leaving room for further nu-
merical optimizations on the nonlinear components. Furthermore,
One might speculate that performing approximation on individual
layers, might result in loss of information coded in between layers,
and hence, an objective of a global numerical approximation of the



layers might be reasonable to conserve prediction power of the net-
work

Acknowledgments

I must sincerely thank my supervisor Alexander Wong, professor of
Computer Science at University of Waterloo and co-director of the
Vision and Image Processing Lab.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.
[Online]. Available: http://arxiv.org/abs/1512.03385

[2] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” CoRR, vol. abs/1404.5997, 2014. [Online].
Available: http://arxiv.org/abs/1404.5997

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[4] ruihangdu, “Decompose cnn,” https://github.com/ruihangdu/
Decompose-CNN.

[5] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic,
“Tensorly: Tensor learning in python,” Journal of Machine
Learning Research, vol. 20, no. 26, pp. 1–6, 2019. [Online].
Available: http://jmlr.org/papers/v20/18-277.html

[6] M. Astrid and S. Lee, “Cp-decomposition with tensor power
method for convolutional neural networks compression,”
CoRR, vol. abs/1701.07148, 2017. [Online]. Available: http:
//arxiv.org/abs/1701.07148

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1404.5997
https://github.com/ruihangdu/Decompose-CNN
https://github.com/ruihangdu/Decompose-CNN
http://jmlr.org/papers/v20/18-277.html
http://arxiv.org/abs/1701.07148
http://arxiv.org/abs/1701.07148

	Introduction
	Automated grid search
	Network factorization and evaluation of performance
	Conclusion

