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Abstract

The RADARSAT Constellation Mission (RCM) offers a compact po-
larimetric (CP) synthetic aperture RADAR (SAR) mode that pro-
vides a wider swath than quad-polarization (QP) and more polar-
ization information in observations than dual-polarization (DP). We
investigate the capability of CP SAR imagery in generating sea ice
maps by taking advantages of learned features, statistical proper-
ties, and contextual information. We present a region-based sea
ice mapping methodology. First, an existing unsupervised seg-
mentation called iterative region growing with semantics based on
statistical properties of CP SAR data (CP-IRGS) is used to gener-
ate edge-preserved and homogeneous regions to reduce destruc-
tive effects of speckle noise. Then, a residual-based convolutional
neural network (ResCNN) is used to specify the type of ice in re-
gions. The performance of the proposed classification methodol-
ogy is compared to that of standard machine learning classifiers,
support vector machine (SVM) and random forest (RF). To simulate
CP SAR data, two QP RADARSAT-2 scenes are utilized. The ob-
tained results indicate that the proposed region-based classification
methodology achieves 96.66% overall accuracy, which is approxi-
mately 4% higher than those obtained by SVM and RF.

1 Introduction

Accurate sea ice mapping from synthetic aperture radar (SAR)
images is critical to support various applications such as climate
change and northern ocean navigation [1, 2]. The RADARSAT con-
stellation mission (RCM), as Canada’s newest generation of Earth
observation SAR satellites, consists of three satellites operating
in single-polarization, dual-polarization (DP), compact polarimetric
(CP), and quad-polarization (QP) acquisition modes [3]. The co-
herency matrix of CP SAR data is a 2×2 semi-positive definite Her-
mitian matrix. For a hybrid-polarity mode [4] in which a right circular
polarized wave (R) is transmitted and coherent dual linear horizon-
tal (H) and vertical (V) polarizations are received, the coherency
matrix is given as:

CCP =

[
⟨| S2

RH |⟩ ⟨SRHS∗RV ⟩
⟨SRV S∗RH⟩ ⟨| S2

RV |⟩

]
(1)

where ⟨...⟩ and ∗ indicate spatial ensemble averaging and the con-
jugate transpose, respectively. Si j is a complex-valued element in
which i and j show transmitted and received polarizations, respec-
tively [5].

There are limited publications that assess CP SAR data for
sea ice mapping, such as [6–8]. The previous studies used stan-
dard machine learning methods such as support vector machine
(SVM) [9] or random forest (RF) [10] to generate sea ice maps
while feature learning methods such as convolutional neural net-
works (CNNs) have shown promising performance in ocean appli-
cations [11–14]. Moreover, in the previous studies, statistical prop-
erties of CP SAR data were not considered in generating sea ice
maps.

Therefore, to address the above mentioned limitations, in this
paper, a region-based sea ice classification in CP SAR imagery is
proposed in which learned features, statistical characteristics and
contextual information in CP SAR imagery are utilized. First an
existing unsupervised segmentation method called iterative region
growing with semantics based on statistical properties of CP SAR
data (CP-IRGS) [15] is used to segment CP SAR data into edge-
preserved and homogeneous regions. Then, a residual-based CNN
(ResCNN) classifier is designed to specify the ice-type labels for
each region.

(a) (b) (c)

Fig. 1: (a) CP-IRGS output using the simulated CP data. (b) Train-
ing and (c) Test scenes along with labeled pixels.

Table 1: The number of training and testing pixels for each class.

Name Description # of train # of test
OW/NI open water and new ice 2000 3290

YI young ice 5889 6383
FYI first-year ice 6396 6383
MYI multi-year ice 5750 5714

2 Experiments

2.1 Study Area

Due to the limited available CP SAR data, a popular method to
obtain CP SAR data is to simulate them using QP SAR data. In
this study, two RADARSAT-2 scenes are used to simulate CP SAR
data [16]. Fig. 1 shows the study area which includes five different
classes: young ice (YI), first-year ice (FYI), multi-year ice (MYI), new
ice (NI), and open water (OW) identified by experts in the Canadian
Ice Service (CIS). Since the backscatter signatures of OW and NI
classes are similar in the test scene, they are assumed as the same
class (OW/NI).

The number of labeled pixels specified by CIS experts is ap-
proximately 1000, which were used to guide the collection of the
remaining labeled pixels. Table 1 shows the number of training and
test pixels in each class. Since the training scene does not include
sufficient numbers of OW/NI samples, 2000 OW/NI samples are ob-
tained from the test scene to train models.

2.2 Results and Discussion

Table 2 shows the structure of the designed ResCNN model which
it is trained by minimizing the multi-class cross-entropy lost func-
tion [17]. To minimize the loss function, the Adam optimizer [18] is
employed. After training the ResCNN model, all pixels in a CP SAR
image can be classified to obtain pixel-level sea ice maps. As inputs
for training the ResCNN model, 3×17×17 patches (3 channels as
the absolute value of the coherency matrix elements) are extracted
around each labeled pixel. However, the number of training patches
in each class is not equal known as unbalanced problem. To over-
come this unbalanced problem, the data augmentation technique,
including horizontal and vertical flips as well as random rotation, is
used to expand the number of training patches to 7000 per each
class.



Table 2: Structure of the ResCNN model along with the operators.

Layer name Output Size Operators

Block 1 17×17×16

[
3×3×16
3×3×16

]

Block 2 9×9×32

[
3×3×32
3×3×32

]

Block 3 5×5×48

[
3×3×48
3×3×48

]

Block 4 3×3×64

[
3×3×64
3×3×64

]
Global Average 1×1×64 3×3 average pool
Classification 4 64×4 fully connected

Softmax 4

Table 3: Confusion matrices obtained by the ResCNN model and
the baseline approaches using the simulated CP.

Method OW/NI YI FYI MYI User’s Accuracy(%)

R
F

OW/NI 3263 18 6 77 96.99
YI 3 4742 1037 630 73.95

FYI 24 563 5305 2 90.00
MYI 0 1060 35 5005 82.05

Overall Accuracy (%): 84.13
Kappa Coefficient: 0.7847

S
V

M

OW/NI 3259 21 9 77 96.82
YI 1 4714 1110 370 76.09

FYI 30 460 5227 3 91.38
MYI 0 1188 37 5264 81.12

Overall Accuracy (%): 84.81
Kappa Coefficient: 0.7942

R
es

C
N

N

OW/NI 3287 40 3 69 96.70
YI 1 4393 615 139 85.33

FYI 2 733 5761 13 88.50
MYI 0 1217 4 5493 81.81

Overall Accuracy (%): 86.97
Kappa Coefficient: 0.8235

Table 4: Confusion matrices obtained by the region-based sea ice
classification methodology using the simulated CP as well as the

two baseline RF, SVM classifiers.

Method OW/NI YI FYI MYI User’s Accuracy(%)

S
V

M
+C

P
-IR

G
S OW/NI 3284 7 2 59 97.97

YI 3 4980 120 21 97.19
FYI 3 22 6257 6 99.51
MYI 0 1374 4 5628 80.33

Overall Accuracy (%): 92.55
Kappa Coefficient: 0.8991

R
F+

C
P

-IR
G

S OW/NI 3284 8 2 59 97.94
YI 3 4977 120 20 97.21

FYI 3 22 6257 6 99.51
MYI 0 1376 4 5629 80.31

Overall Accuracy (%): 92.54
Kappa Coefficient: 0.8990

R
es

C
N

N
+C

P
-IR

G
S OW/NI 3284 32 1 43 97.74

YI 3 5874 121 24 97.54
FYI 3 23 6259 22 99.24
MYI 0 454 2 5625 92.50

Overall Accuracy (%): 96.66
Kappa Coefficient: 0.9546

Fig. 2 (a)-(c) show the pixel-level sea ice maps generated by
RF, SVM and the ResCNN model and the corresponding confusion
matrix is shown in Table 3. The overall accuracy (OA) obtained by

(a) RF (b) SVM (c) ResCNN

(d) RF-IRGS (e) SVM-IRGS (f) ResCNN-IRGS

Fig. 2: (a)-(c) Sea ice maps generated by the RF, SVM, and the
designed CNN model. (d)-(f) Obtained sea ice maps by combining
the regions generated by CP-IRGS with the pixel-level classified
scenes by applying a majority voting in each region.

the ResCNN model is approximately 2% higher than those obtained
by RF and SVM. Compared to the ResCNN model, the results ob-
tained by SVM and RF are noisier, and OA values confirm it. In gen-
eral, all models have detected many YI pixels in the upper part of
the scene as MYI. It could be because the intensity values of those
YI pixels are close to those of MYI pixels. Overall, all three maps
appear quite noisy because many small within-class artifacts are
identified. These small artifacts may be better removed by leverag-
ing contextual information in the CP-IRGS segmentation algorithm.
Moreover, the areas around edges tend to have a high rate of mis-
classification, which may be improved by combining with regions
generated by CP-IRGS.

The final results are achieved by combining the pixel-level sea
ice maps with the homogeneous regions (Fig. 2 (d)-(f)). In general,
compared to the pixel-level sea ice maps (Fig. 2 (a)-(c)), the final
results provide well-identified homogeneous areas, and less noisy
effect caused by small artifacts. According to Table 4, integrating the
output of the ResCNN model and the regions (ResCNN+CP-IRGS)
achieves 96.66% OA. This demonstrates that CP SAR data has reli-
able potential for sea ice mapping by using the region-based sea ice
classification methodology. Combining the outputs of RF and SVM
with the homogeneous regions (RF+CP-IRGS and SVM+CP-IRGS)
achieve 92.55% OA which is approximately 4% lower than that ob-
tained by ResCNN+CP-IRGS, indicating that using deep learning
models instead of standard machine learning classifiers can signif-
icantly increase the accuracy of sea ice maps using CP SAR im-
agery.

3 Conclusion

This paper has presented a methodology based on high-level and
contextual information on SAR imagery to classify different ice
types. At first, a four-block residual-based CNN model is designed
to utilize high-level features to reach a high accuracy labeled map.
Although the ResCNN model reached high accurate sea ice map,
the labeled map was noisy, and some edges vanished. Therefore,
homogeneous regions were extracted from the CP SAR image us-
ing the CP-IRGS segmentation method which it considers the sta-
tistical characteristics of CP SAR data and preserves edges among



different objects. Combining the labeled map with regions by apply-
ing a majority voting increased OA.

To do more investigation on the performance of the region-
based classification methodology, two popular traditional machine
learning classification methods, namely, SVM and RF, were used.
These methods benefit from feature engineering and low-level infor-
mation. SVM and RF reached OA=84.81% and OA=84.13%, respec-
tively. However, combining the outputs of SVM and RF with CP-
IRGS generated regions reached a higher accuracy of OA=92.54%
and OA=92.55% which in comparison with OA obtained by the
ResCNN+CP-IRGS model, they are approximately 4% lower.

Although the region-based classification methodology is used
for generating sea ice maps, it has considerable potential for ad-
dressing other tasks such as land cover identification. Moreover,
it does not consider the dependency among pixels which can be
considered in future works.
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