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Abstract

Robotic applications like self-driving vehicles rely on Simultaneous
Localization and Mapping (SLAM) for their position, which accumu-
lates error over time. It is also requires initialization and periodi-
cally fails. This makes place recognition functionality vitally impor-
tant, allowing recovery in these situations. LIDAR sensors have
seen intense research for their immunity to lighting and generation
of geometric data, while many recent description approaches have
been based on graphs of semantically-relevant objects. This dis-
cretization into landmarks is less affected by viewpoint and occlu-
sion, which can disrupt the distribution of single points and thus
the effectiveness of global scan descriptors. One such method,
Gosmatch, makes use of inter-object Euclidean distance in a se-
ries of histogram descriptors. While this approach works, it may be
advantageous to incorporate more information into these descrip-
tors. Affine Grassmannian distance, an approach combining rela-
tive position and orientation into a distance metric, is a promising
approach to accomplish this. In this work we evaluate their suitabil-
ity as a drop-in replacement for conventional Euclidean distances
in the initial matching stage of Gosmatch’s approach. As virtually
all of Gosmatch’s internal descriptors rely on distance histograms
in some form, we believe this can provide an indication of the po-
tential overall benefit affine Grassmanian distances offer.

1 Introduction

Navigational systems such as simultaneous localization and map-
ping (SLAM), form the core of many cutting-edge applications, in-
cluding self-driving vehicles. These applications typically do not al-
ways have reliable access to GPS or other external means of posi-
tioning. Thus, loop closure is a critical subtask: they must be able
to associate between subsequent visits to the same place so that
drift which is accumulated in the intervening time can be eliminated.
This also aids in recovery when the current position is not known or
is lost due to disruption.

LIDAR sensors have received a great deal of research inter-
est as they are immune to illumination problems that plague con-
ventional vision systems, and also produce geometric information
directly. While past LIDAR place recognition systems have re-
lied upon point cloud statistical measures and local features, akin
to camera-based bag-of-visual-word systems, recent work [1–3]
has been oriented towards higher-level semantic and object-based
place recognition. This work is predicated upon the idea that when
humans memorize a place they do so based on the presence of
high-level objects and semantics and their relationships, rather than
by memorizing the minutiae of small local features and detail. [2]

One such method is Gosmatch [2], which makes use of a multi-
stage pipeline for matching scans of different visits to the same
place. An initial pass seeks to gather the top N most likely can-
didates through basic histogram descriptor matching, constructed
from the physical distances between objects. This is then passed
on to a system which attempts to use additional per-object distance
histogram descriptors to match object between the likely candidates
to determine a reranked top candidate before recovering relative
transformation. The euclidean distances used to construct descrip-
tors at all levels of Gosmatch only record distance to the center of
an object however, which for some object types (ie. large planes)
may not be accurately determined. It is expected be advantageous
to be able to generate distance metrics which take into account rel-
ative orientation where possible.

For this purpose, the recently introduced affine Grassmannian
manifold representation of 3D landmarks [4] provides a compelling
mechanism for determining matching distances. It is a flexible and
generic encapsulation for geometric objects of different dimension
(points, lines, planes, etc) with a single method of computing po-
sition/rotation distance metrics between all of them. All objects are
represented as geometric flats consisting of zero or more basis vec-
tors. Points, lines, planes, and poses (0, 1, 2, and 3 basis vectors)
are obvious examples. From these it is possible to construct rep-

resentations for a variety of real world objects, with walls becoming
planes and poles or tree trunks becoming vertical lines for example.

In this work we compare the relative performance of Euclidean
distance as used by Gosmatch [2] against affine Grassmannian
distances [4] for the purpose of generating first-pass distance his-
togram descriptors. As distances are used similarly in Gosmatch’s
cross-scan object association in its 2nd stage, the results are ex-
pected to also be applicable there. We utilize the same objects
extracted from each scan and histogram description/matching tech-
niques in both cases, ensuring a fair comparison.

2 Background Review

2.1 LIDAR Scan Matching For Place Rcognition

To eliminate drift in navigational systems using loop closure, or to
otherwise recover one’s position in a map, it is necessary to asso-
ciate overlapping LIDAR scans captured at different times. Two gen-
eral means of doing so are through descriptions of local keypoints
and through global descriptors which look at the overall distribution
of points around the LIDAR sensor.

Methods based on keypoints describe local regions in each
scan so that their statistics can be compared between scans, for
example [5] which proposed a voting system based on these small
regions. Originally proposed for object recognition, this approach
suffers from the highly variable density present in large-scale LI-
DAR scenes. Objects like trees with irregular shapes can also be
problematic for extracting local features.[6]

More successful global descriptors capture the overall distribu-
tion of points in the scan as a whole. Scan Context [6] divides the
local cylindrical region into rings of cells and describes points’ max-
imum height in each one. DELIGHT [7] computes histograms on
large sub-regions before performing a final spatial verification us-
ing keypoints between likely matches. LocNet [8] processes a polar
representation of each whole LIDAR scan using a neural network.

However, these methods arguably do not capture how humans
represent places, as regions containing interconnected landmarks.
[2] Lidar place recogntion methods like SegMap[1], Gosmatch [2],
and [3] match scans by segmenting point clouds into semantically-
significant regions and constructing graphs between them. These
representations encode not only the objects present but also the
spatial relationships between them. Operating on semantically-
significant regions, they are more robust to occlusions that can alter
the observed distribution of individual points but may only remove a
couple of high-level objects. [3]

In particular we consider Gosmatch here, which first attempts
to select likely matches to the current scan using histograms of the
distances between objects. The scans with histograms most similar
to that of the current scene are passed on to a second stage which
performs distance-histogram based matching to associate objects
between scans. This allows the for refinement of the likely top can-
didate(s) and also enables alignment of the scans to be attempted.

2.2 Grassmannian Inter-Object Distance Metric

A recently developed use of affine Grassmannian manifolds [4] al-
lows for the description of both the relative position and orientation
of objects. With regular Grassmannian manifolds two objects ex-
pressed as a series of basis vectors can be compared based on
the similarity of their orientations. [4] extends this concept such
that relative position between objects in a LIDAR scan can also be
considered, by augmenting the basis vectors describing each ob-
jects’ orientation with an extra vector derived from their relative posi-
tion. As Gosmatch [2] relies heavily on histograms of the euclidean
distances between objects, here we examine affine Grassmannian
distances as a possible substitute distance metric for improved de-
scriptive power and performance.



3 Methods

In this work we compare the performance of Gosmatch’s [2] first
stage when using the original euclidean distances metric, and
Grassmannian distances between objects to build histogram de-
scriptors. To ensure a level playing field we use the same extracted
objects in both cases, merely changing the distance metric as de-
scribed below.

3.1 Data and Extraction of Objects

As input to the description system, we make use of a series of point
cloud scans from the KITTI dataset [9]. These point clouds are pro-
cessed to extract two kinds of objects in exactly the same way as [4],
the initial demonstration of the affine Grassmannian. Not all scans
are used, and instead are sampled at a spacing of 2 meters. They
are taken from sequences containing loop closures, sequences 00,
02, 05, 08. What is yielded is a series of 2D planes and 1D lines,
including object centroids and basis vectors (two vectors for planes,
one for lines). Planes were extracted using the plane-finding algo-
rithm provided by [4]. Lines are extracted from the SemanticKITTI
dataset [10], derived from street poles.

3.2 Affine Grassmannian and Euclidean Distances

Euclidean distances as used in Gosmatch [2] are straightforward
to collect, taking the distance between every pairing of reported
object centroids in a scan. Affine Grassmanian distances however
are more complex to determine.

For the affine Grassmannian the basis vectors of each object
(and thus its orientation) are also collected, forming a Grassman-
nian matrix A which contains two columns for a plane and one col-
umn for a line/pole. The displacement from the origin of each object
is also determined, yielding a vector b which represents the closest
point on the object to the origin. This is the source of the affine
Grassmannian’s representation of an object’s position in space.

When computing the matching distance between two objects,
the distance between b vector points is used to augment one A ma-
trix while the zero vector augments the other, adding an additional
basis vector to the A matrices at comparison-time. There is some
additional manipulation of the b vectors before matching occurs (to
produce the analogous b0 vectors actually used for augmentation)
with the details described by [4]. Multiplying the augmented A ma-
trices and determining their principle angles using SVD allows for
the final affine Grassmannian distance metric to be computed, in-
corporating both the objects’ relative orientation and displacement
from each other. This is repeated for every pairing of objects, as
with the Euclidean distances.

3.3 Histogram Descriptors

Taking the distances between all planes with each other, all lines
with each other, and all planes with all lines, three sets of distances
are produced. These are used to construct three sub-histograms
(60 bins), which are normalized and concatenated to form the final
histogram description vector (180 bins) which is also normalized.
This is the method employed by [2] to produce the scan descriptors
for their first-stage matching. The difference here is that we per-
form this procedure with both the Euclidean distances (their tech-
nique) and affine Grassmanian distances. Both sets of resulting de-
scriptors are independently tested for their matching performance.
When matching, we take the L2 distance between every descriptor
and every other, and rank the results. The top N matches for each
scan among the other scans can then be taken, in this case the top
N=100. In Gosmatch these would be passed on to inter-scan object
association to further refine the choice of matching scans.

By way of example, if a scan contains planes A, B, and C and
lines X, Y, and Z, then the three sub-histograms (which are concate-
nated to form its descriptor) each contain:

• Inter-object distances AB, BC, and AC. (between planes)
• Inter-object distances XY, YZ, and XZ. (between lines)
• Inter-object distances AX, AY, AZ, BX, BY, BZ, CX, CY, and

CZ. (between planes and lines)

4 Preliminary Experimental Results

For each of the sequences considered, matching was performed as
per the histogram-of-distance descriptors utilized by [2]. Three dif-
ferent measures of distance were used: Full affine Grassmannian
distances, Euclidean distances between the b vectors used by the
affine Grassmanian metric, and Euclidean distance between object
centroids as in the original technique. Recall that the b vectors are
the closest point on a given 2D plane or 2D line/pole that is closest
to the origin. The rational given by [4] is that an infinite plane or
line technically has no discernibly unique points, and so the closest
points to the origin are taken and their displacement used. Mea-
sures are given for a few different bin sizes, with 60 histogram bins
being found to be the best by [2] which is consistent with what is
observed here.

When determining the ground truth for each frame, the set of all
other scans in the sequence is taken which are located less than
10m away. Excluded from this are scans that occurred within 10
seconds, as they are likely from the same visit. A valid match for a
given scan then, is any other scan which is a member of its set. It
is possible when taking the top N scans which are most similar that
multiple scans may be returned which can be found in the ground
truth set for the scan under consideration. In the case of the full
Gosmatch method [2], the returned list of scans from the initial his-
togram matching is later refined down to a final match.

The measures of performance given here are two-fold: The per-
centage of scans for which at least one correct ground truth match
appeared in the top N (N=100) matching scans, and the average
recall across all scans in the sequence. This average recall is the
average of the percentage of ground truth matches for that scan
which appear in the top N taken. If a scan has 20 other scans con-
sidered to be valid matches and 10 appear in the top N matching
scans based on histogram matching, then that would be a recall of
50% for that scan in the sequence. The "top N matches" are merely
the top N other scans which have histogram descriptors with mini-
mum L2 distance (maximum similarity) to the histogram of the scan
currently being considered. These are the output of the first stage
of [2] which are provided for reranking via object-level association
and geometric verification to determine the true final match result.

Observing the results, we can see the unexpected result that
regular Euclidean distance between centers performs consistent
best, despite the expectation that object centroids may not be re-
liably detected. The same Euclidean distance when applied to the
points chosen for Grassmanian distance calculations performs sim-
ilarly to these despite the Grassmanian taking into account orienta-
tion.

Table 1: For sequence 00, "at least one match found" and average
recalls across three distance metrics.

00: At least one found 30 Bins 60 Bins 90 Bins
Grassmanian Distance 92.24% 91.72% 93.1%

Euclidean btw. b Vectors 91.9% 94.66% 94.14%
Euclidean btw. Centroids 95.86% 97.76% 98.79%

00: Average Recall 30 Bins 60 Bins 90 Bins
Grassmanian Distance 14.32% 14.45% 14.27%

Euclidean btw. b Vectors 12.9% 14.35% 14.52%
Euclidean btw. Centroids 18.98% 21.87% 22.55%

Table 2: For sequence 02, "at least one match found" and average
recalls across three distance metrics.

02: At least one found 30 Bins 60 Bins 90 Bins
Grassmanian Distance 74.47% 70.87% 66.97%

Euclidean btw. b Vectors 78.98% 75.38% 75.98%
Euclidean btw. Centroids 83.78% 83.18% 85.59%

02: Average Recall 30 Bins 60 Bins 90 Bins
Grassmanian Distance 11.79% 10.47% 9.45%

Euclidean btw. b Vectors 12.4% 12.88% 13.2%
Euclidean btw. Centroids 13.34% 13.73% 13.83%



Table 3: For sequence 05, "at least one match found" and average
recalls across three distance metrics.

05: At least one found 30 Bins 60 Bins 90 Bins
Grassmanian Distance 88.76% 89.6% 89.33%

Euclidean btw. b Vectors 89.33% 90.73% 89.6%
Euclidean btw. Centroids 96.63% 96.07% 97.75%

05: Average Recall 30 Bins 60 Bins 90 Bins
Grassmanian Distance 17.1% 17.26% 16.86%

Euclidean btw. b Vectors 17.43% 17.48% 17.75%
Euclidean btw. Centroids 20.7% 21.96% 22.82%

Table 4: For sequence 08, "at least one match found" and average
recalls across three distance metrics.

08: At least one found 30 Bins 60 Bins 90 Bins
Grassmanian Distance 72.83% 72.08% 72.08%

Euclidean btw. b Vectors 79.62% 80.0% 78.11%
Euclidean btw. Centroids 97.36% 97.74% 98.49%

08: Average Recall 30 Bins 60 Bins 90 Bins
Grassmanian Distance 13.21% 12.07% 11.94%

Euclidean btw. b Vectors 11.97% 11.77% 10.97%
Euclidean btw. Centroids 21.85% 24.34% 24.86%

5 Discussion

5.1 Affine Grassmanian vs Euclidean Distances

Observing the results, the following is unexpected: regular Eu-
clidean distances between centroids produce better matching than
affine Grassmanian distances over all sequences. This suggests
that the way that the position of each object is determined has a
noticeable effect on the performance of the euclidean distance met-
ric. Centroids from object detection seem to provide better perfor-
mance than the b vectors chosen by the Affine Grassmanian, which
assumes objects are infinite-extending planes or lines. A possible
explanation is that these centroids are in fact fairly stable despite
being drawn from clusters of points which may vary between obser-
vations. It is also possible that there is more noticeable variations
in an object’s b vector between scans, as the sensor origin moves
and different points on the various objects become the closest to it.

When using the same points for position between the two meth-
ods (b vectors) we also observe that Euclidean distances and affine
Grassmanian distances perform extremely similarly. This would
suggest that in this application (histograms of distances) while the
affine Grassmanian considers both orientation and position the rel-
ative position between objects has the stronger contribution. Alter-
natively, any contribution made by considering orientation is hard to
notice when combined with possible poor performance from relative
position when using b vectors.

In further experimentation, it would be instructive to modify the
affine Grassmanian to make use of centroids instead of b vec-
tors. This would essentially be to make the assumption that ob-
jects (planes, lines) are not of infinite extent and have a fixed po-
sition while still maintaining that they have orientations which can
be compared. The result would be two-fold. It would first allow for a
more complete comparison between euclidean distances and affine
Grassmanian distances, when using the seemingly better method
for determining position (centroids). It may also provde an improved
platform upon which to evaluate the contribution of considering ob-
ject orientation using the affine Grassmanian.

5.2 Overall Performance vs Gosmatch

While very little information is provided regarding the performance
of Gosmatch [2]’s first stage of scan-level histogram descriptor
matching, they do note in one instance that N=10, that they use
10 bins instead of the 100 used here to obtain measurable perfor-
mance. The reason for this is believed to be the number of object
categories considered. In the original Gosmatch paper [2], three

categories of objects were used, and thus the concatenated his-
togram descriptor had six segments (three that were between a
category and itself, and three containing distances between objects
of different categories). Here we make use of the extracted ob-
jects used by [4] for evaluation of the affine Grassmannian distance
metric, in which only two Grassmanian object categories are avail-
able and thus only three sub-histograms per descriptor are possible.
This difference in the descriptiveness of histogram descriptors is be-
lieved to be responsible for the difference in performance. In future
exploration it would be ideal to perform comparisons using datasets
with more categories of extracted objects. This could be obtained by
performing object extraction on the different categories of semanti-
cally labeled data in the SemanticKitti [10] LIDAR dataset, where
many more classes are available.

6 Conclusions

We set out to evaluate affine Grassmanian distances as a viable
enhancement to the histogram-based descriptors in [2], beginning
with those used in its initial top-N ranking of match candidates. The
belief was that introduction of rotational information into the distance
metrics used would improve matching performance. Conversely it
was observed to have had no or negative effect compared to eu-
clidean distance. A likely contributing factor appears to be the affine
Grassmanian’s method of selecting points for each object’s position
in space. Alteration of the affine Grassmanian to use object cen-
troids is expected to be a good alternative for future exploration. We
also found indications of overall reduced performance compared to
[2] but this is believed to be due to a reduction in available object
categories and recommend investigating this using data with more
object categories derived from SemanticKitti [10]. Overall, methods
like [2] represent a promising approach to the problem of LIDAR
place recognition, with robustness and viewpoint invariance through
object-level landmarks, and we believe the application of the affine
Grassmanian warrants further investigation. Work in this area is
vital to the success of navigational systems based on LIDAR tech-
nology, and we hope to see systems like these continue to improve
and support new applications.
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