Continuous Optimization for Medical Image Registration of Large Displacement Datasets
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Abstract

Medical image registration is an important component of many clini-
cal analysis pipelines. While this approach has conventionally been
approached using optimization, deep learning has recently gained
interest due to speed of inference. In this work, we demonstrate
that gradient-based optimization with modified learning rate is suf-
ficient to achieve state of the art accuracy in a large displacement
dataset. The approach is also competitive in terms of speed with
deep learning approaches. We discuss the implications of this work
on medical image registration at large and future directions to ex-
tend the findings presented here.

1 Introduction

Medical image registration (MIR) is the task of aligning a pair of
medical images. It has a myriad of clinical applications including
surgical planning, quantitative disease tracking and medical image
atlas creation. Conventional methods for MIR typically formulate
registration as an optimization problem. While conventional meth-
ods have been successful, they are typically slow. There has re-
cently been interest in applying deep learning to the image registra-
tion problem, which can produce registration orders of magnitude
faster than conventional methods.

While deep learning methods have demonstrated the ability to
produce accurate registrations on a range of datasets, current ap-
proaches suffer from several limitations. Firstly, deep learning re-
quires large datasets to train a model. In the space of medical im-
age analysis, obtaining such large datasets is often difficult. Sec-
ondly, recent deep learning methods have been shown to not per-
form as well as conventional registration methods where there is a
large spatial disparity between the images that are being registered.

To address the large displacement issue, recent methods have
adopted a hybrid approach to registration, combining both deep
learning with conventional opimization for finetuning. ConvexAdam,
a more recent approach yet, has shown that combining discrete
optimization with continuous optimization as finetuning can achieve
state of the art performance on large displacement dataset. The
discrete optimization, it is postulated, enables the optimizer to over-
come local optima.

In this work, we show that continuous optimization, with the
correct choice of hyper-parameters, is able to achieve state of the
art performance on a large displacement lung CT dataset, outper-
forming state of the art and many contemporary deep learning ap-
proaches. We show that continuous optimization on the GPU is
also fast, overcoming the performance limitations of past optimiza-
tion approaches.

2 Background

The objective function for finding the optimal displacement field, ¢*,
for registering a moving image, m, to a fixed image, f, typically has
the form:
¢*:m§X(S(mo¢,f)+R(¢)) 1)
where S is some measure of similarity between the transformed
moving image and the fixed image and R is some regularization
functional that penalizes highly irregular or complex transforma-
tions. Typical similarity measures include mutual information, nor-
malized cross correlation and MIND, described by [1]. A common
regularizer is the L2-norm of the displacement field or that of its
gradient.

A common way to parameterize the displacement field, ¢, is to
use a dense deformation field, D € R¥*#>*WxD that describes the
displacement of each pixel or voxel in a moving image to a fixed
image. With this parametrization, Equation (1) becomes

o =m‘;lx(S(mo(IdJrD),f)+R(D)) 2)

where Id is the identity grid and Id + D describes the (sub-) voxel
coordinates of each moving voxel in the fixed coordinate frame. The
transform function, mo ¢ then, is simply a resampling operation that
resamples and interpolates the moving image to a new coordinate
grid. For deep learning, this resampling operation can be carried out
using spatial transformer networks, which formulate the resampling
as a differentiable operation, enabling backpropagation of error.

One strategy to solve such a problem would be through iterative
gradient methods. One can perform simple gradient descent on the
loss function described above, using:

o' =¢""" —nVyL (3)

where L is the loss function, described by the expression inside
the max in Equations (1) and (2), 1 is the learning rate, and V, is the
jacobian operator. In general, the loss objective is non-convex and
simple gradient descent will converge to a local optimum. More-
over, simple gradient descent tends to oscillate as it always follows
the steepest slope. A common strategy, especially when optimizing
neural networks, is to dampen the learning rate with some mea-
sure of momentum such that the weights do not move in directions
where there is large oscillation, hence low momentum. Adam [2] is
a common optimizer that uses momentum to dampen oscillations.
Another common strategy is to use a learning rate scheduler to de-
crease the magnitude of ) as the optimizer begins to converge, so
that there is oscillation closer to the optimal point.

2.1 ConvexAdam

Naive gradient descent using Equation (3) can converge to local
optima. ConvexAdam combines two strategies for overcoming lo-
cal optima: dual optimiztation and discrete search space. Shown
in Equation (4) is the formulation that ConvexAdam uses. Convex-
Adam [3] makes use of the principal of duality in convex optimization
by introducing a dual variable v and reformulating the loss function
as:

L'(u,v) = L(V)+ L(v —u)> +R(u)

>0 (4)

This optimization can be solved in a coupled fashion; in each
iteration u is first optimized, followed by v and the parameter 6 that
enforces the consistency between u and v is decreased accord-
ing to some schedule. When decoupled, the optimization of u and
Vv becomes convex and can be solved using convex optimization
techniques.

Further, ConvexAdam discretizes the search space. All dis-
placements lie within some range, parametrized by parameter r € Z,
such that the displacement is the set of integer values in the range
[—r,r]. By discretizing the search space, the optimization is able to
take larger ‘steps’, whereas the in the continuous domain the opti-
mizer would have to take, likely sub-voxel step sizes.

In order to achieve sub-voxel accuracies, ConvexAdam com-
bines the discrete dual-optimization just described with continuous
domain finetuning using gradient-based iteration as described by
Equation (3). This finetuning uses the flow field generated by the
discrete optimization. Instead of direct gradient descent, Convex-
Adam uses an ADAM optimizer, which uses momentum to dampen
oscillations and has been successful in optimizing deep neural net-
works in a variety of problem domains.

This combination of dual and discrete optimization with contin-
uous domain ADAM optimization achieved state of the art perfor-
mance in the large displacement dataset for MICCAI 2021 work-
shop, outperforming deep learning and conventional optimization
methods.
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Fig. 1: Piece wise learning rate schedule. For step s, the learning
rate schedule is constant for s < 70, cosine decay for 70 < s < 180
and linear decay for 180 < s <270

3 Methods

3.1 Dataset

The NLST dataset contains 100 pairs of chest CT scans taken at
patient inhalation and exhalation. The dataset also includes lung
masks and corresponding pairs of keypoints between pairs of im-
ages. All volumes have been resampled onto an affine grid with
dimensions (224,192,224) and isotropic spacing of 1.5mm. We fur-
ther normalize the intensities of the volumes between between neg-
ative 4000 and positive 16000.

This dataset poses several challenges for registration. Firstly,
there is large discrepancy in the volume of the lungs between
inhalation and exhalation; this large displacement setting is one
where deep learning methods have struggled to produce optimal
results. Another challenge for deep learning methods is the size of
the dataset is only 100, making it difficult to generalize to unseen
data.

3.2 Approach

Given a pair of images, f and m, we implement continuous opti-
mization of the flow field, using the iterative formulation described
in Equations (1) and (3). Like ConvexAdam, we augment the gra-
dients with momentum using the ADAM optimizer, which dampens
the oscillations in the optimization trajectory achieved through un-
modified gradient descent. Our similarity and regularization metrics
are identical to the ones used by ConvexAdam. We briefly describe
them here.

To compare similarity between the warped and target images,
we compute the mean squared distance between the fixed and
warped MIND features. This can be expressed as:

|
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where N is the size of the image in voxels, Fy is the MIND fea-
ture of the target image and F,, is the MIND feature of the warped
image. The regularization function is simply the mean gradient of
the displacement field:

1
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Unlike ConvexAdam, which uses a constant learning rate of 1,
we use a piecewise decreasing learning rate as shown in Figure 1.
Intuitively, the large learning rate in the initial step enables us to take
larger steps, while the smaller steps at later resolutions enables us
to achieve sub-voxel displacements.

We also study the performance of the two optimization compo-
nents (i.e. the discrete optimization and the continuous optimiza-
tion) of ConvexAdam separately. This enables us to directly com-
pare the continuous-domain optimization between the two methods

and also provides novel insights into the performance of the discrete
optimization.

We evaluate the performance of the registration using a key-
point displacement, which measures the distance (in voxels) of cor-
responding points in the target and warped images. A lower TRE
score indicates better registration performance.

4 Results

Overall, the experiments conducted proved that 10 could be greatly
improved and that its value is not only limited to fine-tuning pre-
dictions but proves itself to be an outstanding standalone tool. The
state-of-the-art performance observed in the experiments described
below is achieved without requiring labels, keypoints, or segmenta-
tions to be provided to the algorithm besides the volume itself. It
should be noted that for all experiments, all results converged well
within the set number of iterations.

The coupled convex algorithm, ConvexAdam, and our algorithm
result in an average TRE of 2.78mm, 1.14mm, and 0.888mm re-
spectively.

The single LR of 1 for 100 iterations produces remarkably good
registration results for such a simple solution, but with some fine-
tuning can be improved greatly.

A very high learning rate of 15, allows all of the images to reach
some local optima, with an average TRE of 2.44mm, but in the ma-
jority of cases this minimum is not a global minimum and for 100(%)
of cases, sub-voxel accuracy cannot be achieved. However, im-
ages with large initial displacements significantly benefit from a high
learning rate and are able to overcome local minima that were sti-
fling performance when using an LR of 1.

In the hybrid cosine/linear decay LR schedule, 100(%) of paired
images maintained or even exceeded their performance while those
that were scoring above-voxel TRE improved most notably. Most
notably image 0006 TRE improves from 16 to 1.48, achieving sub-
voxel accuracy. The initial large learning rate of this schedule allows
difficult local minima to be overcome while maintaining outstanding
performance with the most basic optimizer.

This indicates that the network has the capability to find excel-
lent solutions and local minima without the contributions of an initial
prediction of a certain or any quality, eliminating the need for dis-
crete optimization ahead of time.

Overall we observe excellent performance from 10 alone with-
out the need for an initial prediction. With the addition of a curated
LR schedule, we see results even further improve to match the per-
formance from when an initial prediction is set.

5 Conclusion

We show that our continuous domain optimization approach is able
to beat state of the art performance of large displacement lung reg-
istration. The significance of this result is two-fold; first, the sepa-
ration of ConvexAdam enables us to thoroughly examine the roles
of the different optimization steps; such an examination was not
present in the original ConvexAdam paper and is, therefore, pro-
vides greater insight into this method.

Next steps include testing the approach presented here against
other medical image datasets. This should give us an idea of how
generalizable our approach is to other anatomies and displacement
settings. While the learning rate schedule was found through trial
and error, future work can explore the possibility of a meta network
to learn the parameters of the optimization, similar to hypermorph
[4].
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