
Enhancing Reinforcement Learning in Vision-Based Environments with Optical Flow

Amartya Mukherjee1 Jun Liu1

1 Department of Applied Mathematics, University of Waterloo
{a29mukhe,j.liu}@uwaterloo.ca

Abstract

Reinforcement learning (RL) has emerged as a powerful technique for
training agents to excel in a wide range of sequential decision-making
tasks, including playing video games in the Atari 2600 environment.
While convolutional neural networks (CNNs) have been effective in ex-
tracting meaningful features from frames, the representation of motion
remains a challenge. Optical flow (OF) gives information about the
motion in sequential image data such as videos, which makes it use-
ful in reinforcement learning. In this paper, we propose an approach
to improve the performance of RL models in Atari environments by
concatenating OF with raw image frames as input. Our experiments
show that adding OF to an environment improves the training of the
Deep Q Network (DQN) model and shows higher rewards compared
to concatenating the present frame with its previous frame.

1 Introduction

In recent years, there has been a growing interest in reinforcement
learning (RL) for a multitude of problems including optimal control and
gaming. RL has shown promising capabilities in maximizing a notion
of cumulative reward in environments with unknown dynamics through
a balance of exploration in the environment and exploitation of the
learned policies [1]. In RL tasks involving physical systems, under-
standing the dynamics of an environment is of paramount importance
in finding an optimal policy.

The need for understanding the dynamics of an environment led
to the advent of model-based RL (MBRL). One of the earliest works is
the Dyna algorithm by [2], which uses a neural network to approximate
transition and reward models. Another significant contribution to the
field is by [3], which introduces an efficient algorithm to sample the
value and promising actions from a search tree. This algorithm has
been used by AlphaGo to train a Go player that outperforms humans
[4].

In visual RL, agents must learn actions that maximize a notion of
cumulative reward based on visual observations of the environment.
The authors of [5] used RL to achieve optimal control tasks by ob-
serving the robot from a camera. They learn visual representations
for goals, transition dynamics, and rewards to achieve this. The au-
thors of [6] apply MBRL to Atari games. They use U-Net architecture
to predict the next frame in a game based on the past four frames.

In the processing of sequential image data such as videos, motion
vectors (MV) and optical flow (OF) have led to significant advances in
video indexing and identification [7]. Due to taking significantly smaller
values compared to images and being computationally efficient [8],
MVs have aided in video compression [9]. Optical flow [10] is a variant
of motion vectors under continuous position and time. It is obtained
by solving a first-order partial differential equation (PDE)-contrained
optimization problem. Both methods give estimates of the motion of
videos, thus making them extremely useful in video understanding
tasks.

In recent years, the application of motion vectors and optical flow
in computer vision models has been of high interest to the ML com-
munity. The authors of [11] use optical flow as a visual representation
to improve acoustic event detection models. The work of [12] trains
a model to take a video and its motion vectors as input and outputs
an optical flow. The paper [13] uses motion vectors to aid in learning
spatial attention in videos, improving the accuracy and efficiency of
action recognition models. Furthermore, the work of [14] uses mo-
tion vector representations to assist in video super-resolution. Due to
containing information on the velocity field of each frame, motion vec-
tors were useful in increasing the frame rate in a video by assisting in
inter-frame generation.

In this paper, we will focus on the application of OF to the training

of vision-based RL models. For example, the environment could be
an Atari game like Breakout or SpaceInvaders, where understanding
the motion of the player and objects is crucial to scoring high points.
We train a Deep Q Network (DQN) that takes the current frame of the
environment with its OF. Since the OF is a visual representation that
contains information about the motion in the environment, no such
representation needs to be learned by the DQN. And OF is computed
by solving a PDE-constrained optimization problem, which is signif-
icantly more computationally efficient compared to training a neural
network and expecting it to learn these representations. We conduct
a set of numerical experiments that show that integrating OF improves
the training of the DQN and shows higher rewards compared to con-
catenating the present frame with its previous frame. We expect that
incorporating optical flow will improve the performance of visual RL
tasks in general.

2 Preliminaries

Throughout this work, we will refer to I(x,y, t) : [0, I(x)]× [0, I(y)]×
[0,∞)→ R as the (continuous time) image frame at time t at position
(x,y). And we will refer to I(t) ∈ RI(x)×I(y) as the pixelated representa-
tion of the image. I(x) is the width of the image, and I(y) is the height
of the image.

2.1 Optical Flow

The OF is a vector field v(x,y, t) that models the velocity of the pixel
at the position (x,y) [15]. It is derived by solving a PDE-constrained
optimization problem:

v(x,y, t) = argminv||∇I(x,y, t) ·v(x,y, t)+ It(x,y, t)||, (1)

where ∇I(x,y, t) is the gradient vector of I(x,y, t) with respect to its spa-
tial coordinates, and It(x,y, t) is the partial derivative of I with respect
to its temporal coordinate.

The OF is computed numerically using the Lucas–Kanade method
[16]. In this method, for every pixel with spatial coordinate (x,y), v(x,y)
is computed by solving the following optimization problem:

v(x,y, t) = argminv||Av(x,y)+b||2, (2)

where A ∈ Rp×2 is the matrix consisting of finite-difference approxi-
mations of ∇I(x,y, t) at p neighboring pixels, and b ∈ Rp is the vec-
tor consisting of finite-difference approximations of It(x,y, t). This is
solved using the least squares method. In this paper, we will refer
to v(t) ∈ R2×I(x)×I(y) as the pixel representation of the motion vector at
time t.

2.2 Deep Q Learning

Deep Q Learning is a RL algorithm that involves training a DQN pa-
rameterized by weights w [1]. A DQN takes a state and action as input
and outputs the following expected cumulative reward:

Qw(s,a) = E
[
∑
t

γ
trt |s0 = s,a0 = a

]
, (3)

where rt ,st ,at are the rewards, states, and actions at time step t. At
each time step, a transition {st ,at ,rt ,st+1} is recorded and used later
to update the DQN using the Bellman equation:

w← w−α∇w(rt + γ max
a′

Qw(st+1,a′)−Qw(st ,at))
2, (4)

where α is a learning rate. The weights of Qw(s′,a′) are frozen here.
In our paper, the states will be grayscaled and rescaled images at time
t, I(t), concatenated with its optical flow. The preprocessing of these
frames will be explained in section 3.

3 Deep Q Learning with Optical Flow embeddings

In this work, we will explore the intersection of RL with OF. OF gives
information about the motion of sequential image data, which gives it
importance in training RL models.

For an RGB frame at time step t, we preprocess it according to
the evaluation protocol from [17]. We grayscale the frame and resize
it to 84×84 to obtain I(t)

For I(t), we compute the OF v(t) using the Lucas–Kanade
method. For compatibility with DQN, we scaled the OF by: v(t) ←
np.uint8(np.clip(8v(t)+ 127.5,0,255)). We then concatenate I(t)
with v(t) to obtain the state st ∈ R3×84×84, which we then pass into
our DQN as input. We used the DQN implementation by [18] for this
paper.

To assess the practicality of OF in Atari environment, we plotted
v(t) for an arbitrary time step in the Breakout-v5 and SpaceInvaders-v5
environment in figures 1 and 2. Based on the OF for the Breakout-v5
environment, it is clear that the ball is moving towards the bottom-
left direction, and the platform is moving to the right. And the OF for
the SpaceInvaders-v5 environment is fuzzy in comparison, but it clear
that the bullet is moving upwards, and the user-controlled spaceship
is moving to the right.

0 50 100 150

0

25

50

75

100

125

150

175

200

0 50 100 150

0

25

50

75

100

125

150

175

200

0 50 100 150

0

25

50

75

100

125

150

175

20090

100

110

120

130

140

130

135

140

145

150

155

160

165

Fig. 1: Optical flow mapping of the motion in the x-direction (left),
the motion in the y-direction (middle), of a time step in the Breakout
environment (right)

0 50 100 150

0

25

50

75

100

125

150

175

200

0 50 100 150

0

25

50

75

100

125

150

175

200

0 50 100 150

0

25

50

75

100

125

150

175

200110

115

120

125

130

135

140

145

60

70

80

90

100

110

120

130

Fig. 2: Optical flow mapping of the motion in the x-direction (left), the
motion in the y-direction (middle), of a time step in the SpaceInvaders
environment (right)

We then proceed to test the DQN with the preprocessed data on
18 different Atari environments to see if OF helps with the training of
these models.

4 Numerical Results

In this section, we will evaluate the benefit of OF in training a DQN
models. To assess this, we will compare it to an algorithm where we
concatenate the current frame I(t) with the previous frame I(t−1). At
time step 0, we let I(−1) = I(0). I(t) is processed similarly as mentioned
in section 3.

We train the DQN model on 18 different Atari environments for a
million time steps each. To speed up the training process, we trained

each model on the Cedar cluster in Compute Canada using 4 P100-
12gb GPUs. Training each model took approximately 2 hours.

For a comparison of the two algorithms, we posted the learning
curves for each environment in figure 3. In 8 out of the 18 environ-
ments, DQN with OF shows significantly higher rewards compared to
DQN with concatenation. DQN with concatenation shows significantly
higher rewards only in the Pooyan-v5 environment. In the remaining
9 environments, both algorithms show equal performance.

This method shows an overall improvement compared to a DQN
that takes the concatenation of a frame with its previous frame as
input. The reason DQN with OF shows improved performance is
because the OF is a visual representation of the motion in an envi-
ronment that no longer needs to be learned by the DQN to choose
optimal actions. Thus, the results show that the combination of im-
age data with motion representation can improve the performance of
RL algorithms in vision-based environments such as Atari because it
provides a richer and more informative representation for RL models.

5 Conclusion

In this paper, we present a study of the effectiveness of integrating op-
tical flow information alongside image data and assess its impact on
the performance of RL agents. We extract the OF from Atari environ-
ments on a frame-by-frame basis and concatenate it with the frame
to as an input for our DQN. We demonstrate that this combination re-
sults in improved learning and higher rewards compared to a DQN
that takes the concatenation of a frame with its previous frame as in-
put.

This research contributes to the broader understanding of how vi-
sual information and motion cues can be leveraged to optimize RL in
Atari games, ultimately paving the way for more capable and efficient
agents in dynamic real-world scenarios. For future work, we would
like to see how OF enhances the performance of RL algorithms out-
side the scope of video games. Applications include robotics such as
mentioned in [5]. It will be interesting to see how the integration of OF
in RL algorithms helps controllers deal with issues and uncertainty
arising from integrating RL with experiments conducted in real life.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An intro-
duction. MIT press, 2018.

[2] R. S. Sutton, “Dyna, an integrated architecture for learning, plan-
ning, and reacting,” ACM Sigart Bulletin, vol. 2, no. 4, pp. 160–
163, 1991.

[3] R. Coulom, “Efficient selectivity and backup operators in monte-
carlo tree search,” in International conference on computers and
games. Springer, 2006, pp. 72–83.

[4] D. Silver, A. Huang, and C. e. a. Maddison, “Mastering the game
of go with deep neural networks and tree search,” Nature, vol.
529, p. 484–489, 2016.

[5] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine,
“Visual reinforcement learning with imagined goals,” Advances
in neural information processing systems, vol. 31, 2018.

[6] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,
K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine et al.,
“Model-based reinforcement learning for atari,” arXiv preprint
arXiv:1903.00374, 2019.

[7] A. Akutsu, Y. Tonomura, H. Hashimoto, and Y. Ohba, “Video in-
dexing using motion vectors,” in Visual Communications and Im-
age Processing’92, vol. 1818. SPIE, 1992, pp. 1522–1530.

[8] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algo-
rithm for block motion estimation,” IEEE transactions on circuits
and systems for video technology, vol. 4, no. 4, pp. 438–442,
1994.

0.0 0.2 0.4 0.6 0.8 1.0
1e6

300

400

500

600

700

800
AirRaid-v5

reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

200

300

400

500

600

700

Assault-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

200

300

400

500

600

700

800

Asterix-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

300

400

500

600

700

BeamRider-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

2

4

6

8

10

Breakout-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

500

550

600

650

700

750

800

850
Carnival-v5

reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

50

100

150

Enduro-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

5

10

15

20

Freeway-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

10

15

20

25

30

Frogger-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

300

400

500

600

700

800

Galaxian-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

300

400

500

600

700

800

900

Gopher-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

20

40

60

80

100

120

140

Kaboom-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

0

100

200

300

400

Koolaid-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

200

0

200

400

600

800

1000

1200

1400

LostLuggage-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

200

300

400

500

600

700

800

900
MsPacman-v5

reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

21.0

20.5

20.0

19.5

19.0

18.5

18.0

17.5

Pong-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

200

400

600

800

1000

1200

1400

1600
Pooyan-v5

reward_avg_Concatenate
reward_avg_OpticalFlow

0.0 0.2 0.4 0.6 0.8 1.0
timestep 1e6

50

100

150

200

250

300

SpaceInvaders-v5
reward_avg_Concatenate
reward_avg_OpticalFlow

Fig. 3: Comparison of learning curves for Optical Flow (Red) compared to Concatenation (Blue)

[9] C.-L. B. Lin and M.-C. Lee, “Efficient motion vector coding for
video compression,” US Patent 6983018, January 2006.

[10] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artifi-
cial intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[11] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang,
“Real-world acoustic event detection,” Pattern recognition letters,
vol. 31, no. 12, pp. 1543–1551, 2010.

[12] W. Liu, S. M. Ayyoubzadeh, Y. Yu, I. Kezele, Y. Wang, X. Wu, and
J. Tang, “Method, apparatus and system for adaptating a ma-
chine learning model for optical flow map prediction,” U.S. Patent
20230148384A1, May 2023.

[13] M. Shahabinejad, I. Kezele, S. S. Nabavi, W. Liu, S. Patel,
Y. Yu, Y. Wang, and J. Tang, “Video action recognition with
adaptive zooming using motion residuals,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, October 2023, pp. 1214–1223.

[14] W. Liu, Y. Yu, Y. Wang, J. Lu, X. Wu, and J. Tang, “Method,
device, and medium for generating super-resolution video,” U.S.
Patent 20230148384A1, October 2023.

[15] M. Hasegawa-Johnson, “Lecture 6: Optical flow,” ECE 417: Mul-
timedia Signal Processing, University of Illinois, 2021.

[16] B. D. Lucas and T. Kanade, “An iterative image registration tech-
nique with an application to stereo vision,” in IJCAI’81: 7th inter-
national joint conference on Artificial intelligence, vol. 2, 1981,
pp. 674–679.

[17] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness,
M. Hausknecht, and M. Bowling, “Revisiting the arcade learning
environment: Evaluation protocols and open problems for gen-
eral agents,” Journal of Artificial Intelligence Research, vol. 61,
pp. 523–562, 2018.

[18] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learn-
ing implementations,” Journal of Machine Learning Research,
vol. 22, no. 268, pp. 1–8, 2021.

	Introduction
	Preliminaries
	Optical Flow
	Deep Q Learning

	Deep Q Learning with Optical Flow embeddings
	Numerical Results
	Conclusion

