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Abstract

Standard methods of sperm cell motility analysis involve the tracking
of single cells and determining overall motility and velocity of the cells.
For Drosophila, an important model organism for reproduction and
genetic studies, such methods cannot be applied due to the large
size and entanglement of the sperm cells, which makes single cell
motion challenging with current video analysis methods. We propose
two metrics which can be used to numerically quantify this motility.
To evaluate the efficacy of these metrics, a synthetic data set and
accompanying ground truth metrics are developed.

1 Introduction

Spermatozoa are the most diverse cell types, expressed by a vast va-
riety of cell shapes and sizes [1]. Quantifying sperm motility is one
of the most important methods to predict sperm quality and fertil-
ization outcome, besides sperm morphology and total sperm num-
ber. In most mammalian sperm, the motility can easily be measured
based on the forward motion of sperm and characterized by single
cell velocity and overall percentage of motility. The fruit fly Drosophila
melanogaster has become an important model organism to study re-
production and effects of environmental and genetic modifications on
the off-spring, thanks to its fast reproduction rate [2]. Especially for
studying reproduction and sexual selection, Drosophila melanogaster
has many advantages, such as fast generation time, large number of
offspring, possible in vivo imaging and a decoded genome since 2000.
Drosophila melanogaster is also very useful for studying speciation,
sperm competition and the evolution of male and female reproductive
traits [2].

The evaluation of sperm motility in Drosophila melanogaster has
been challenging due to the extremely long cells of over a millimeter,
their bundling behaviour and rather crawling motion, which makes the
measurement of forward motion of single cells impossible. In previous
studies, it was found that drosophila sperm move in circular patterns in
the uterus using arc-line waveforms. It was also visible that they enter
the seminal receptacle in parallel tail-leading formations by transform-
ing from circular to linear waveforms[3]. Highspeed videomicroscopy
allows the recording of Drosophila melanogaster sperm motion, but
its quantification has not been achieved up to now. We present here
a motility benchmark of multiple unsupervised motion tracking meth-
ods such as optical flow and temporal variation for the analysis of
drosophila sperm motion. We compare the outcome of these meth-
ods on a new synthetic data set that we generate to mimic the visual
behaviour of drosophila sperm motion by defining a new metric for
motility. We give implications on the sensitivity and overall suitability
of this method to be applied to sperm cell analysis of species in which
single cell tracking is impossible. The goal of our approach is to quan-
tify the overall level of sperm motility, rather than extracting data for
the beat frequency or amplitude of single cells.

2 Methods

We present two different approaches to quantifying drosophila
sperm motility based on 1) temporal variation of video recordings
of drosophila sperm motion, and 2) optical flow. Videos of free
drosophila sperm released from the seminal vesicle are recorded in
phase contrast mode in order to provide a sharp image contrast (see
Figure 1). Sperm flagella appear white while the background is black.
Sperm motion will thus cause a movement of the bright pixels. Both
optical flow and temporal variation are used to quantify the fluctuations

Fig. 1: Spermatozoa of the fruit fly. A) Model organism Drosophila
melanogaster. B) Microscopic image of the seminal vesicle that is
releasing sperm cells onto a cover slide. C) 400x magnification of
spermatozoa. Sperm cells appear white on dark background in phase
contrast microscopy.

created by motion of sperm in the image sequence as a single scalar
value. To evaluate the accuracy and robustness of these metrics, a
synthetic data set of 500 videos with varying motility are generated.
Various methods of quantifying the ground truth motility of the videos
are proposed, and each analysis method is evaluated against these
ground truth metrics.

2.1 Videomicroscopy of Drosophila melanogaster Sper-
matozoa

Dissection of the seminal vesicle was performed under a stereoscope
in a 5 microliter droplet of phosphate buffered saline. The seminal
vesicle was transferred onto a fresh 20 microliter droplet on a new
slide and covered with a cover slide. Videomicroscopy was performed
immediately after dissection with a Leica DSM inverted microscope
and a Phantom highspeed camera, recording videos at 50 frames per
second (FPS) in phase contrast and 100-400x magnification.

2.2 Metrics for Motility

2.2.1 Optical Flow

Motility analysis of videos with optical flow uses Farneback’s algorithm
[4], implemented in OpenCV. Optical flow is applied to all pixels in all
pairs of subsequent frames. The magnitude of the motion at every
pixel in all frames is averaged to obtain a single metric for motility.
Applying this method, motility can be expressed as:
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where f is the total number of frames, w is the width of the video
frame, h is the height of the video frame, and Vi jk is the magnitude
of the velocity calculated via optical flow between the i-th and (i+1)-
th frames at the pixel located at the j-th row of the k-th column, with
indexes beginning at the top left. Optical flow tends to be less accurate
when cells are grouped close together. The individual cells become



Fig. 2: (A) A real image of drosophila sperm obtained by phase con-
trast microscopy. Per-pixel heatmaps illustrating the change in pixel
brightness over course of the video, as a measure of motility for opti-
cal flow (B) and temporal variation (C). Brighter colours indicate higher
motility.

nearly indistinguishable, which seems to cause optical flow to fail to
isolate individual velocities per pixel. Additionally, when multiple cells
overlap during their motion, there is no well-defined velocity of that
pixel for a given frame, which would lead to optical flow measurements
being meaningless at those pixels. See Figs. 2 and 3 for examples of
this. In the area where a large number of cells are clustered, optical
flow outputs relatively low values even if there is a significant amount
of motion.

2.2.2 Temporal Variation

Motility analysis of videos via temporal variation computes the aver-
age change in a pixel’s value between frames. Similarly to optical flow
analysis, the total motility is computed by averaging the temporal vari-
ation values across all pixels in all pairs of subsequent frames. With
this method, motility can be expressed as:
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where, similar to (1),c is the number of color channels, and Vi jkm is the
value of the m-th color channel of the pixel located at the k-th row of
the j-th column of frame i.

2.3 Synthetic Data Generation

All videos were generated at 50 FPS at a resolution of 512× 512 for
a total of 1000 frames using the Pygame graphics library in Python.
To generate the motion, individual fly sperm cells are represented as
ropes on a 2D, frictionless plane. The ropes do not interact with each
other. Each rope is composed of a set of discrete points used for sim-
ulating the physics of the rope, each separated by 5 pixels and evenly
spaced throughout the rope. The number of ropes, and the length,
direction, initial location, and initial angle of each rope are sampled
from a random uniform distribution. The process to generate a rope
is as follows:

procedure CREATEROPE(start, length,resolution)
angle← uni f orm(−π,π)
bias← uni f orm(−0.1,0.1)
pointAmount← length/resolution
points← []
for i← 0, pointAmount−1 do

if i ̸= 0 then
prevLoc← points[i−1]

else
prevLoc← start

end if

Fig. 3: A still image from a synthetic dataset mimicking drosophila
sperm motion. Per-pixel heatmaps illustrating the change in pixel
brightness over course of the video, as a measure of motility for opti-
cal flow (B) and temporal variation (C). Brighter colours indicate higher
motility.

angle← angle+uni f orm(−0.1,0.1)+bias
if randint(0,20) == 0 then

bias← uni f orm(−0.05,0.05)
end if
x← prevLoc[0]+ cos(angle)∗ resolution
y← prevLoc[1]+ sin(angle)∗ resolution
points.add([x,y])

end for
return points

end procedure
This process has the effect of creating a pseudo-random path for the
initial state of the rope. The bias term ensures that the rope is suffi-
ciently curvy, and is not just a straight line.

To emulate the sinusoidal movement of drosophila sperm, a time-
varying force is applied to each discrete point on the rope. Within
a rope, the forces at each point have a common amplitude and fre-
quency. At each point, the forces are applied perpendicular to the
rope at the point. Each rope has its own amplitude and frequency.
Forces on each rope are applied as follows:

procedure APPLYFORCES(points,amplitude, f requency, f rameNum)
p← 0
phaseIncrement← f requency/2
for i← 0, points.length−1 do

angle← f requency∗ f rameNum+ p
applyAcceleration(points, i,amplitude∗ sin(theta))
p← p+ phaseIncrement

end for
end procedure

where applyAcceleration(points i, a) applies an acceleration of a at
the i-th point of the rope perpendicular to the rope at point i. To sim-
ulate these physical effects, a variant of Störmer–Verlet integration is
applied [5]. See Fig. 3 for an example.

2.4 Ground Truth Metrics

To analyze the accuracy and robustness of optical flow and temporal
variation as applied to sperm motility analysis using the synthetic data,
multiple ground truth metrics are proposed. These include:

1. Mg1 =
1
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where Mg is ground-truth motility, r is the total number of ropes,
amplitudei and f requencyi are the amplitude and frequency of oscil-
lation for the i-th rope, and lengthi is the length in pixels of the i-th



Fig. 4: Scatter plots of true and predicted motility for various analysis
methods and ground truth metrics. A) Optical flow results compared
to ground truth metric 1. B) Optical flow results compared to ground
truth metric 2. C) Temporal variation results compared to ground truth
metric 1. D) Temporal variation results compared to ground truth met-
ric 2. Both the x and y axes are relative. Each point represents a
video from the synthetic dataset. Both metrics are significantly more
sensitive to amplitude than to frequency of oscillation. The fitting lines
represent linear regression.

rope. Dip is the total distance travelled (in pixels) by the p-th point on
the i-th rope, and ni is the total number of points in the i-th rope.

2.4.1 Limitations

1. None of the ground truth metrics account for the discrete na-
ture of pixels. Internally, the positions of the points for each
rope are represented as floating point values. These get
rounded to integer values when displaying the ropes. For ex-
ample, this means that if a point on a rope moves from 33.2 to
33.4, in the video it will appear as if it has not moved.

2. Neither of the metrics account for ropes which go off the
screen. Due to the nature of the algorithm used to draw the
initial path of the ropes, ropes may leave the screen, which is
not accounted for in the ground truth metrics.

3 Results

The outputs for optical flow and temporal variation are highly corre-
lated with each other, with r = 0.8588. Both optical flow and tem-
poral variation are significantly more sensitive to amplitude than to
frequency, as shown in Fig. 4 and Table 1. While optical flow
is more accurate for the oscillation-based metrics (based on ampli-
tude/frequency), temporal variation is much more accurate when us-
ing the total distance travelled by the points on the rope as the ground
truth. This is likely due to the nature of optical flow and temporal vari-
ation. While optical flow is able to quantify the velocity of cell motion,
temporal variation indirectly measures distance travelled by individual
points in the cells by analyzing the frequency which the cell moves
through a given pixel.

Overall, both temporal variation and optical flow are promising
methods for analyzing the challenging visual motion of fly sperm motil-
ity.

4 Conclusion

In this preliminary work, we compare the suitability of using temporal
variation and optical flow for the quantitative motility analysis of model
organism Drosophila melanogaster. To simplify the sample data, we
generate a synthetic data set that allows comparison of the methods
and their performance regarding assessing differences in videos such

Table 1: Correlations (r2 values) between analysis methods and
ground truth metrics on synthetic data. For oscillation-based ground
truth metrics, optical flow tends to be superior, but temporal variation
is more accurate when considering distance travelled by points on the
cells.

Method
Ground Truth Metric

Amplitude Frequency Amplitude & Frequency Distance

Optical Flow 0.8555 0.2764 0.8675 0.8439

Temporal Variation 0.7827 0.0588 0.6613 0.9823

as cell number, frequency and amplitude, without accounting for other
artefacts found in real videos. We propose a new synthetic data set
that closely imitates the bundling and crawling motions that makes
motility measurement visually challenging. Furthermore, we design
new metrics for the ground truth motility of our synthetic data set and
benchmark unsupervised motion tracking methods on our data set.
We conclude that both temporal variation and optical flow are rela-
tively robust and accurate metrics for quantifying sperm cell motility.

As sperm cells are one of the most diverse cell types, and sperm
cell analysis has not been standardized for many species, the pre-
sented methods have the potential to be applied to various other
species as well that have been challenging to quantify with conven-
tional computer-assisted sperm analysis. Further, these methods
could be used to quantify other biological motility patterns as well,
such as molecular motors, e.g. microtubuli that display train like pat-
terns observed under fluorescent microscopy, and parasite or worm
motion patterns in high density.

Additionally, more work needs to be done to evaluate the effective-
ness of both metrics with real-world data. Non-idealities in real-world
videos such as blurriness, debris and compression artifacts are not
included in the synthetic data set. To further improve realism of the
synthetically generated videos, techniques such as neural style trans-
fer [6] can be applied.

Although it would be ideal to analyze the accuracy of both metrics
on real videos, we can only quantitatively evaluate the accuracy of
the two metrics with the artificial videos. With the artificial videos,
we can exactly control all the parameters used to generate them and
create quantitative ground truths of motility for those videos based
on the parameters. A further qualitative analysis of both metrics on
real data is warranted to determine how transferable our conclusions
about both motility metrics are to real-world videos. Overall, temporal
variation and optical flow hold potential as powerful tools to evaluate
challenging motility data sets given further development.
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