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Abstract

Ocular Surface Temperature (OST) assessment is an important
biomarker for ocular health evaluation. Infrared (IR) thermography,
prized for its precision and non-invasiveness, stands out in this do-
main. The ThermOcular system, is a tool for assessing OST and
combines machine vision and thermal imaging for corneal segmenta-
tion to locate the region of interest. We expanded the ThermOcular’s
capabilities using state-of-the-art semantic segmentation models to
improve and extend the identification of additional ocular components,
specifically the pupil, iris, and sclera. Drawing from two datasets, our
exclusive ’Apricot’ and the renowned TEyeD, and utilizing OCRNet in
conjunction with transfer learning, significant enhancements in seg-
mentation performance were achieved . As a result, the upgraded
ThermOcular system presents unparalleled precision in OST assess-
ments, paving the way for innovative advancements in ocular health
diagnostics.

1 Introduction

The ThermOcular system is a sophisticated tool designed for the pre-
cise assessment of Ocular Surface Temperature (OST), a crucial met-
ric in ocular health diagnostics[1]. Integrated into this system is a dual-
camera setup: one dedicated to infrared(IR) imaging and the other to
visual imaging. Positioned on a slit lamp bio microscope base (Figure
1), it assures optimal capture conditions for both imaging modalities.
Upon initialization, the system records a synchronized video feed en-

Fig. 1: The ThermOcular device used for Ocular Surface Temperature
assessment.[1]

compassing both the IR and visual spectral ranges of an examined
eye. Subsequently, control points are defined manually within these
frames, serving as pivotal reference nodes for the image registration
algorithm. The importance of this registration cannot be understated,
as it ensures spatial congruence between visual and IR frames.

Following successful registration, a specialized segmentation al-
gorithm is invoked. Its primary task: the delineation of the Region of
Interest (ROI), specifically, the cornea. Through this algorithm, tem-

perature data of the cornea are extracted, ensuring a targeted ap-
proach to OST.

To maintain a consistent and automated data extraction process,
the system employs an optical flow algorithm. This algorithm au-
tonomously identifies control points for upcoming frame pairs, facili-
tating a continual stream of temperature data. It’s important to note,
however, that the primary focus of this paper is not on the optical flow
technique itself, but rather on improving the segmentation performace
of the system. The intricate steps of this algorithmic procedure are
detailed in Figure 2 .

Fig. 2: Operational Flowchart of the ThermOcular System

The segmentation process within the ThermOcular device serves
a dual purpose: ensuring the specificity of temperature readings by fo-
cusing solely on the cornea, and eliminating extraneous IR data from
other ocular components. Such precision is vital, not merely for accu-
racy but also for the reliability of the OST assessments derived from
the system.

The ThermOcular system employed the Resnet50-PSPNet[2] as
its primary neural network for segmenting the cornea. This model,
which is pre-trained on the ImageNet[3], has been further refined us-
ing transfer learning technique on a dataset of 126 labeled images
specific to the cornea. The effectiveness of this model, gauged using
the mean Intersection Over Union (IOU) metric, showcased a com-
mendable performance with an mean IOU of 94.6% for the cornea
and background classes.

In this study, OCRNet[4] has been selected for the semantic seg-
mentation task, employing the HRNet-w18 backbone that has been
pretrained on the VOC12 dataset[5]. This choice was driven by the
need for a more expansive and precise segmentation strategy. The
OCRNet was trained on a diverse dataset: 180 labeled images pro-
cured from the ’Apricot’ study, an initiative undertaken at the Murphy
Laboratory of Experimental Optometry (MLEO), coupled with an addi-
tional 2,000 images picked from the TEyeD dataset[6]. This compre-
hensive training bore fruit, with the mean IOU for the pupil, iris, sclera,
and background reaching a remarkable 97.61%.

For a meaningful and transparent comparison between the orig-
inal ThermOcular segmentation model and the one proposed in this
study, it’s pivotal to focus on equivalent classes. When considering
the mean IOU specifically for the pupil and iris (representative of the
cornea in the original model) along with the background (rest of the
image including sclera), the metric peaks at an impressive 97.61%.



This imporvement corroborates a significant enhancement in segmen-
tation performance, offering a more precise tool for ocular health as-
sessment.

The remainder of this paper is organized as follows: In Section II,
the pertinent related works that have shaped the current landscape of
ocular segmentation are reviewed. Section III delves into the process
of dataset preparation, elucidating the steps undertaken to ensure
its variance. Subsequently, in Section IV, a comprehensive compari-
son of state-of-the-art models trained on the prepared dataset is pre-
sented, underscoring each model’s respective merits and limitations.
In conclusion, the findings and potential avenues for future research
are discussed.

2 Related Works

Ocular biometry has experienced significant advances in recent
years, primarily focusing on iris recognition and segmentation tech-
niques. This section offers insights into pivotal contributions in this
realm:

1. Traditional Iris Segmentation Techniques:
• A widely-accepted method that utilized the combination

of canny edge detection with circular Hough transform-
based algorithms was discussed in [7]. This technique
delineates both inner and outer boundaries of the iris, al-
beit with heightened computational demands.

• An innovative approach was presented in [8] that em-
ployed a sliding rectangular window for initial pupil loca-
tion. Subsequently, the outer iris circle was ascertained
through the assessment of grayscale values outside the
pupil zone.

• The IrisSeg framework, introduced in [9], adopted a
coarse-to-fine adaptive filtering technique to detect the
iris boundary, exemplifying the adaptability of segmenta-
tion methods.

2. Deep Learning in Iris Segmentation:
• The domain has witnessed the profound impact of deep

learning methodologies. Foremost examples comprise
the use of Fully Convolutional Networks (FCN) as seen in
[10–12], and the amalgamation of Generative Adversarial
Networks (GAN) with FCN in [11]. Such architectures
prioritize hierarchical feature extraction.

• The PixlSegNet framework, elucidated in [13], stands
out with its convolutional encoder–decoder architecture.
The unique integration of a stacked hourglass network
between the encoder and decoder paths provided a nu-
anced segmentation approach.

• The inclusion of the capsule network in iris recognition,
detailed in [14], introduced a dynamic routing algorithm
within the capsule layers, which was a deviation from tra-
ditional CNN frameworks.

3. Segmentation Challenges and Advancements:
• The research in [15] proposed a distinct methodology

rooted in the AdaBoost algorithm and neural networks.
Bypassing the common assumption of iris circularity, this
method classified iris image pixels without such con-
straints, enabling greater segmentation adaptability.

• The studies in [16, 17] pioneered the use of modular neu-
ral nets (MNN) for iris detection, underlining the complex-
ities of iris detection in cluttered scenes and the advan-
tages of neural nets in such contexts.

4. Pupil Segmentation:
• The recent inclination towards deep learning finds its ap-

plication in pupil segmentation as well. DeepVOG, as
characterized in [18], adopted the U-Net based CNN
structure. This model’s emphasis on video-oculography
(VOG) images demonstrated its high precision, as re-
flected by the Dice coefficient.

• A staged methodology was put forth in [19, 20], where
the preliminary CNN provides a rudimentary pupil posi-
tion estimate, which was subsequently refined by a sec-
ondary CNN. This tiered strategy aspired to enhance
real-time segmentation accuracy.

• An avant-garde approach in [21] advocated the employ-
ment of a deconvolutional neural network for pupil seg-
mentation, tested on an extensive array of datasets.

The evolution from conventional methodologies to contemporary
deep learning architectures in ocular segmentation is evident from
the aforementioned studies. This work builds upon these founda-
tional concepts, by producing further refinement in segmentation tech-
niques.

3 Methodology

3.1 Dataset Preparation

To acquire a diverse and representative set of ocular images, a study
titled ‘Apricot’ at the MLEO lab, School of Optometry, University of Wa-
terloo was conducted. Machine vision videos spanning 15 seconds,
were recorded for 20 subjects as they blinked naturally. From these
recordings, a total of 180 images were carefully selected to encom-
pass a range of eye conditions: fully open, half-open, and completely
closed, among others.

Annotation of these images was executed using the Supervisely
toolbox, a reliable tool for segmentation-focused image annotations.
To further bolster the dataset’s robustness, an additional 2000 images
from the TEyeD dataset[6], a publicly available dataset were incorpo-
rated. (Figure 3)

Fig. 3: Sample images from TEyeD dataset.

Given the imbalance between the proprietary ’Apricot’ images
and the TEyeD images, the former were replicated tenfold before
augmentation. This was essential to ensure adequate representa-
tion during model training. Following this, a series of data aug-
mentations—including rotation, flipping, and cropping—were applied,
aiming to enhance the dataset’s diversity and consequently improve
model generalization.

3.2 Segmentation

3.2.1 Model Selection

For ensuring the finest segmentation outcomes, a series of
state-of-the-art semantic segmentation models were assessed, in-
cluding PSPNet[2], Deeplabv3[22], PP-LiteSeg[23], Unet+++[24],
SegFormer[25], and OCRNet[4]. These models were selected as they
have demonstrated effectiveness in various semantic segmentation
challenges, especially in medical images segmentation tasks.

3.2.2 Training Details

The optimal model configuration entailed a batch size of 5 across
15,000 iterations, with a learning rate of 0.01. The SGD optimizer
was employed, coupled with the cross entropy loss function. Notably,
the HRNet-w18 served as the backbone, with the model being pre-
trained on the VOC12 dataset, subsequently fine-tuned on the MLEO
proprietary dataset.



3.2.3 Benchmarking

To gauge the segmentation efficacy, the mean IOU metric was em-
ployed. This metric captures the model’s accuracy in distinguishing
between various ocular regions, offering a holistic view of segmenta-
tion performance. The performance of each model, in terms of their
overall mean IOU, is tabulated below:

Table 1: Benchmarking Results for Semantic Segmentation Models

Model-Backbone Pre-train DS MIOU(total) (%) MIOU
Cornea&bg

PSPNet-ResNet50 ImageNet 91.68 94.6
Deeplabv3-ResNet50 VOC12 95.28 97.11
PP-LiteSeg-STDC2 Cityscapes 92.13 93.54

Unet Cityscapes 90.21 93.91
Unet+++ Cityscapes 96.34 96.88

SegFormer Cityscapes 96.34 97.36
OCRNet-HRNet-w18 VOC12 97.61 98.24

4 Conclusion

Accurate assessment of Ocular Surface Temperature (OST) is pivotal
for thorough ocular health diagnostics. The ThermOcular system, uti-
lizing IR thermography, marks a significant stride in this direction. This
paper reports on a method to improve its performance, with a focus
on refining the semantic segmentation of ocular components.

The experiments with state-of-the-art semantic segmentation
models, notably the OCRNet with an HRNet-w18 backbone, show-
cased notable improvements, achieving a mean IOU of 98.24% for
critical ocular components when compared to the previous model.

These enhancements raise the bar for OST monitoring and set
a precedent for future endeavors in ocular imaging and diagnostics.
The refined ThermOcular system, with its heightened precision and
comprehensive approach, stands as a promising tool in the realm of
ocular health assessment, paving the way for further advancements
in the field.
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