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Abstract

Multi-Object Tracking (MOT) is the combined task of localization and
association of subjects across a temporal sequence. Unlike the pop-
ular pedestrian tracking paradigms, monocular tracking of ice hockey
players from broadcast feeds presents a variety of challenges due
to rapid non-linear motions, occlusions, blurs, and pan-tilt-zoom ef-
fects. To tackle these issues, there neither exists public datasets nor
benchmarks trained on public datasets to date. To this end, we pro-
pose: (a) VIP-HTD - a public ice hockey tracking dataset, processed
& curated from existing work, and (b) a public benchmark for multi-
player tracking based on it. Further, we also present our observations
processing this dataset and discuss the two key metrics (IDF1 score
and ID switches) required for optimal tracking evaluations. With this
work, we take a step towards creating a unified public benchmark for
evaluating multi-player tracking in hockey. Our dataset is available at
https://github.com/harshap-ai/VIP-HTD

1 Introduction

Multi-Object Tracking and Identification pursues the combined tasks
of detection, association, and re-identification across a temporal se-
quence of frames. Most state-of-the-art methods [1–3] leverage
the Tracking-by-Detection (TBD) paradigm to predominantly track
crowded pedestrian scenes and benchmark on the MOT Challenge
Dataset [4]. Several methods [5–10] have extended this to track-
ing players in sports, either through handcrafted features or via deep
learning methods.

Although tracking in sports is filled with practical applications, it
has several inherent challenges in the form of non-linear motion, oc-
clusion, dynamic actions, pan-tilt-zoom changes in the telecast, frag-
mented broadcast videos (commercials, pop-ups, crowd-cam), etc.
Ice hockey, being one of the fastest field games, has all the afore-
mentioned challenges and therefore, serves as an excellent candidate
sport for overcoming these difficulties. One of the primary goals in ice
hockey is to estimate the most strategic positions to place players on
ice, such that, they are optimized to score goals and avoid conced-
ing to the opposition [11]. To achieve this, the integral first step is
the localization of players on the rink and tracking their movements
consistently throughout a temporal sequence.

Recent approaches using deep learning have shown a multi-fold
increase in the accuracy of tracking players compared to traditional
methods [12, 13]. The existing state-of-the-art (SOTA) baseline in
ice-hockey [8] uses an MOT Neural Solver (MPN) [14] architecture
fine-tuned on a private dataset with broadcast ice-hockey clips to track
players with high accuracy (MOT accuracy score). Subsequently, they
[9] use this framework to generate tracklets (tracks) for the down-
stream task of player identification from broadcast videos. While these
are promising developments, there exist two limitations in the base-
line: first, they do not benchmark on a public dataset, making it difficult
to reproduce their results; second, the MOT accuracy favors the de-
tector more than the tracker itself. Though one can argue that in TBD
paradigms, detectors play an important role along with the Trackers, it
is essential to evaluate them separately to know where the bottleneck
lies.

To address the first limitation, as far as we know, there exists
only a single public dataset with MOT annotations for Ice-hockey [15].
Their contribution is salient; but, the dataset remains unusable - it has
erroneous/missing annotations, redundant clips, wrong meta-data,
and no parsed frames (Ref. Figure 1). Thus, to make it plug&play,
we take up the task of processing this dataset extensively and build a
new ready-to-use version titled "VIP-Hockey Tracking Dataset (VIP-
HTD)" based on it. Taking a step forward, we use our dataset to cre-

*1https://github.com/opencv/cvat

Fig. 1: MHPTD failure modes: L-R {Erroneous, Missing & Offset}
bounding boxes,

ate a public benchmark using a simple graphical Message Passing
Network (MPN) to enable future performance evaluations.

To address the second limitation, we observe that the IDF1
and ID switch (IDs) scores are the principle tracking metrics that
establish whether a player was consistently tracked throughout a
temporal sequence. Recognizing its importance in reducing player
swaps/tracklet fragmentations, we model our benchmark based on
optimizing these metrics. Our contributions in this work are three-fold:

1. We propose a plug&play dataset (VIP-HTD), processed and
curated from the MHPT [15] dataset.

2. We train a similar model as [8, 9, 14] on our proposed dataset
to create benchmark scores, and,

3. We discuss the relevance of IDF1 and ID Switch scores [16] in
generating tracklets without swaps/fragmentations.

2 Dataset

The motivation behind the VIP-HTD dataset is to establish a public
ice hockey-specific tracking dataset. Instead of manually annotating
frames, we improved upon the raw MHPT dataset [15], through the
addition of parsed frames, rectification of erroneous annotations, cu-
ration of non-redundant feed, and proper meta-data analysis, making
it ready-to-use. Our derived VIP-HTD consists of 22 broadcast clips
from 8 different games, containing side-of-the-rink views with a reso-
lution of 1280x720p.

Fig. 2: Duration of each video in the VIP-HTD dataset.

The average duration of each clip is 73 seconds, with frames
sampled at either 30Hz or 60Hz. The refined annotations contain
{frame IDs, objects IDs, bounding box coordinates, confidence score,
category, visibility }, with the confidence score and category set to 1,
as they are manual annotations and one single category (players),
respectively. The preferred train:test:validation split that works best

https://github.com/harshap-ai/VIP-HTD


Fig. 3: Frame samples from the 8 different games in VIP-HTD dataset

in our benchmark experiments is 14:7:1, with the test set belonging
to similar games from the train set, but containing mutually exclusive
frames (different clips/portions) to avoid data leakage.

Two major observations & contributions made during the creation
of our VIP-HTD dataset are as follows:

2.1 Frames

We parsed all the clips according to their respective sampling rates
using the open-source CVAT tool1. Interestingly, when we tried pars-
ing frames using external libraries like OpenCV [17] or moviepy [18],
we ended up with more frames compared to the frames exported
from CVAT for a given clip. Upon further investigations, we found
that the cause of this deviation was different video synchronization
options used in different tools - specifically, CVAT uses FFMPEG [19]
as a backend API for parsing videos, which passes timestamps from
the Demultiplexer to the Multiplexer (enable flag: -vsync 0), facilitat-
ing synchronized frame parsing as per the clip’s native sampling rate.
Without this option, we observed an offset effect which translates the
player bounding box location by a small margin, as we move toward
the tail-end of the parsed frames distribution. Therefore, to avoid this
error, we have provided the synchronized frames extracted from CVAT
along with this dataset.

2.2 Annotation Scheme

Conventionally, in the MOT challenge datasets [4], an object (pedes-
trian) is assigned identities at the ’tracklet’ level i.e., whenever an ob-
ject exits at time, ti and re-enters at time t j s.t j > i, it is assigned a
new identity. Conversely, in both the raw MHPTD [15] and Kanav et
al.’s [8] private dataset, object (player) identities are assigned at the
’personnel’ level i.e., when a player exits at time, ti and re-enters at
time t j s.t j > i, they are assigned the same identity. The reasoning
behind it is that pedestrians often move unidirectionally while hockey
players appear repetitively in a given field of view (FoV).

Although this intuitively makes sense, without an ideal re-
identification model and a large temporal window, a player who re-
enters after a significant time interval is often assigned a new object
ID. Moreover, re-identification is especially difficult in ice hockey, since
player features are often indistinguishable due to covered faces, uni-
form jersey colors (within a team), and limited appearance features.

During evaluation, when ground-truth tracklets T gt
n∗ with time-

ordered object IDs Oid
n , are matched to tracked hypotheses ID hid

m
based on a distance threshold (IoU), we obtain tracked outputs as
T det

n∗ = (hid
m ,oid

n ), where m and n are tracked and ground truth object
IDs respectively. An object re-entering after a frame interval t > 1,

which is assigned a new hid
k leads to a new (hid

k ,Oid
n ) pair (hkid,oid

n ), s.t
k ̸= m. This instant is then accounted as an identity switch (IDs), re-
sulting in an ↑ in IDs and ↓ in IDF1 score. All further associations are
then updated as (hkid,oid

n ), and the new hypothesis hkid is considered
as the default (until another switch occurs).

The ’personnel-level’ annotation scheme, thus penalizes models
without a strong re-identification component for re-entering subjects,
which is unsuitable for certain tracking models without a large tempo-
ral window [14, 20, 21]. Thus, it is essential to process the ground-
truth annotations to have both ’tracklet-level’ (as followed in [4]) and
’personnel-level’ IDs, for use as per the chosen model’s abilities. We
provide both the annotation schemes, along with their conversion
script in the code base.

3 Methodology

3.1 Benchmark Implementation

We opt for the Message Passing Network architecture (MPN)[14] simi-
lar to our baseline [9] to ensure a fair comparison, but our implementa-
tion benchmarks on the public VIP-HTD dataset while the baseline is
trained using a private, unpublished hockey dataset. The MPN tracker
encompasses three major components: A Detector, A Re-ID feature
extractor, and an MPN tracker. Player detection is performed using
the Tracktor [20] algorithm, which uses a Faster-RCNN network [22]
with a ResNet-50 [23] based Feature Pyramid Network (FPN) [24]
backbone, pre-trained on the COCO dataset [25] and fine-tuned on
our VIP-HTD dataset. Since Tracktor is originally a tracking algorithm,
it generates its own object IDs, which are discarded. The appear-
ance features of these detections are encoded using a Resnet-50
[23], pre-trained on the ImageNet [26] dataset, followed by global av-
erage pooling and two fully-connected layers to obtain embeddings
of dimension 256. This network is fine-tuned by [14] on three popular
Re-Identification (ReID) datasets: Market1501 [27], CUHK03 [28] and
DukeMTMC [29]. Note that we do not train the Re-ID network on our
Hockey dataset and consider the original Re-ID network as used in
[8, 9].

To train the MPN [14], we use a batch size of 8, where each
batch corresponds to small clips of 15 frames uniformly sampled at
9 Hz. This approach helps handle the two different sampling rates
(30 and 60 Hz) in the VIP-HTD dataset. The network is optimized for
25 epochs with AdamW [30], with a learning rate of 0.001 and weight
decay of 0.0001. Data augmentation is performed by randomly re-
moving nodes from the graph, thereby simulating missed detections,
and randomly shifting bounding boxes. Both, the object detector [20],
which is fine-tuned for 27 epochs using the default configuration; and



Method FP↓ FN ↓ IDSW ↓ IDF1 ↑ MOTA ↑
Tracktor[20] (30Hz) 1706 4216 687 0.56 90.1%

Kanav et al. [8] (30Hz) 4057 2586 414 0.62 94.0%
Ours (30&60Hz) 14583 5627 403 0.74 82.0%

Table 1: Comparison between our model and baselines

Method Annotation Scheme False Positives ↓ False Negatives ↓ IDs ↓ IDF1 ↑ MOTA ↑
Kanav et al. [8] Personnel-level 3838 2735 428 0.62 94.0%
Kanav et al. [8] Tracklet-level 7865 5357 251 0.77 89.0%

Ours Personnel-level 14452 5703 509 0.63 81.7%
Ours* Tracklet-level 14583 5627 403 0.75 81.7%

Table 2: Comparison between ’Personnel-level’ and ’Tracklet-level’ annotation schemes

the MPN tracking algorithm [14] are trained on an NVIDIA GeForce
2080Ti GPU with 32 GB RAM and 16 cores. It is to be noted here
that for [8], we fine-tune the object detector [20] and train the MPN
network to recreate their results solely using their private dataset. For
our baseline, we fine-tune the object detector [20] and train our MPN
network solely with our VIP-HTD public dataset.

3.2 Evaluation Metrics

To quantitatively evaluate our results, we calculate the Multi-Object
Tracking Accuracy (MOTA) [16] score and Identification F1 (IDF1)
score as our metrics, as followed by most other benchmarks in the
tracking space.

• The MOTA is estimated as the complement of three distinct er-
rors -

MOTA = 1− ∑t FNt +FPt + IDst)

∑t GT t
(1)

– False Positives (FPs) occur when a hypothesis hi has no
corresponding ground truth gti within a specified thresh-
old. This is given as:

FP =
∑t FPt

∑t GT t
(2)

– False Negatives (FNs) occur when a ground-truth gti is
missed to be detected, and has no corresponding hypoth-
esis hi, given by:

FN =
∑t FNt

∑t GT t
(3)

– ID switches (IDs) occur when two different hypotheses
h1o1 and h2o2 switch (frame-level) when in close proxim-
ity, and lead to h1o2 and h2o1, as given by:

IDs =
∑t IDst

∑t GT t
(4)

where, h and o are hypothesis and ground-truth IDs re-
spectively.

• The IDF1 score helps estimate the percentage of correctly
tracked identities (tracklet-level), given as the ratio of correctly
identified detections over the average number of ground truth
and computed detections.

IDF1 = 2× T Pid

T Pid +FPid +FNid
(5)

where, T Pid ,FPid ,FNid are True Positive, False Positive and
False Negative tracklet identities.

3.3 What is relevant?

The False-positives (FPs) and False-negatives (FNs) are majorly de-
pendent on the accuracy of the object detector and are not affected
by the tracking algorithm. Thereby, the MOTA score is biased in favor

of optimizing the detector rather than the tracker. This paints a false
picture of our tracker’s performance and leads us to a proxy objective.

To offset this effect, the two most important metrics to follow are:
the IDF1 score, which measures how consistently the identity of a
tracked object is preserved with respect to the ground truth identity,
and thus is favored to ↑; and the IDs score, which increases when a
ground truth ID i is assigned a hypothesis ID j, when the last known
assignment ID was k ̸= j, and thus is favored to ↓. A high IDF1 score
and low IDs denote that our model has fewer tracklet fragmentation
errors and player identity swaps, and is imperative for downstream
analyses.

4 Results and Ablations

We compare our method trained on the VIP-HTD dataset [15], with
the present baseline from Kanav et al. [8] and Tracktor [20], both of
which were trained on the private hockey dataset used by [8, 9]. To
ensure a fair comparison, we shrink our dataset’s clip sizes to ∼40
seconds, similar to the clip durations of the private baseline dataset,
as FPs and FNs tend to increase proportionally with the number of
frames. Note that, we end up obtaining twice the frame count for 60
Hz clips when compared to 30 Hz clips when shrunk to the same
duration, thereby cumulatively leading to more FPs and FNs in our
results. From Table 1, we find good improvements in the IDF1 and
IDs scores, which are key factors for sports analytics as the identities
of players remain relatively consistent throughout the sequence in our
approach.

We perform an ablation study on the proposed change in the an-
notation scheme to better understand our approach. We perform ex-
periments on both the private baseline dataset [8, 9] and our VIP-HTD
dataset for a fair comparison. In Table 2, for both datasets, we achieve
significantly higher IDF1 scores and lower IDs for ’Tracklet-level’ anno-
tations. This is because the MOT neural solver MPN architecture [14],
that both we and the baseline [8, 9] adopt, has a temporal window of
only 15 frames. Thus, a player who re-enters after 15 frames will be
given a new ID, which leads to an ID switch error in the ’Personnel-
level’ annotation scheme. It is also interesting to note here that while
IDF1 scores ↑ and ID switches ↓ significantly, the MOTA score re-
mains constant (nearly) for both cases, thereby re-affirming that it is
detector-dependent and doesn’t depict our tracking performance di-
rectly.

5 Conclusion & Future Works

We present a public, plug&play dataset (VIP-HTD) for the challenging
task of Ice-hockey player tracking. We explain the processes under-
taken to process and curate it and present a study on two different
annotation schemes that can be followed based on the model design.
We disseminate the differences between different evaluation metrics
and establish IDF1 score and IDs as the two major metrics to con-
sider for sports tracking. Going forward, we aim to explore different
architectures with the VIP-HTD dataset, investigate the drop in MOTA
further, and progress towards achieving downstream tasks that are
aided by this method.
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