
The Effects of Label Errors in Training Data on Model Performance and Overfitting

Nicholas Pellegrino*1 Nolen Zhao*1,2 Paul Fieguth1

1Vision and Image Processing Group, Systems Design Engineering, University of Waterloo
2Mechanical & Mechatronics Engineering, University of Waterloo

{npellegr,n37zhao,pfieguth}@uwaterloo.ca

Abstract

Training data used in machine learning applications are often as-
sumed to be perfect, i.e., do not contain any errors; however, this
is almost never the case and may lead to limitations in the resulting
model performance. In this paper, the effects of the presence of la-
bel errors in training data are studied quantitatively and in relation to
model overfitting. By artificially creating label errors, it is observed that
a constrained (small) CNN model exhibits remarkable generalizability
— retaining high accuracy even when most data are mislabelled! Test
accuracy catastrophically falls only for unrealistically high label error
rates, at a point related to the number of classes present in the data.
These preliminary experiments pave the road towards further studies
of model robustness, possibly offering a quantitative method through
which to compare models.

1 Introduction

In supervised learning problems, a set of labelled data, known as
training data, are required to optimize / train the model [1, 2]. Deep
neural networks, including convolutional neural networks (CNNs) [3,
4], consist of layers of interconnected artificial neurons with associ-
ated weights which must be optimized in order to train the model.
Machine learning engineers normally assume that the “ground truth”
training data are labelled correctly ; however, this is not necessarily
the case, and in fact is often not the case! Indeed, in many bench-
mark datasets, label errors are present in rates on the order of 5% [5],
for example, in ImageNet [6]. In biological data, for example, the re-
cently introduced BIOSCAN-1M Insect Dataset [7], where images of
insects are labelled according to their taxonomy, the presence of la-
belling errors is nearly inevitable given the difficulty of the taxonomic
assessment problem [7, 8] and human error. In cases where train-
ing data label errors exist, one must ask the question of how model
performance ought to be evaluated, and what it means to achieve a
particular percentage accuracy when some (likely unknown) fraction
of labels are incorrect.

For illustration purposes, two versions of labelled data from a sim-
ple 2-class problem are pictured in the top row of Figure 1. In the first
column, the data contains outliers, and in the second column, there
are label errors. Data point shape (circle vs. triangle) indicates the
true class and colour (red vs. blue) indicates the ground truth (train-
ing) label. Note that while outliers and mislabelled data may appear
to be similar, the two arise from completely different causes and will
impact classification models differently. Assuming data are clustered
with high density, surrounding some prototypical center point, outlier
points are those that are far from their true class’s center, whereas
mislabelled data may appear anywhere but actually are often (due to
the assumption of high density) near their true class’s center. The
presence of mislabelled data may lead to local classification error, es-
pecially in cases of overfitting. Indeed, a more local classifier, such as
a nearest-neighbour scheme (shown in middle row of Figure 1), would
be highly susceptible to overfitting and local errors, whereas a more
global classifier, for example a 5-nearest-neighbour scheme (shown
in bottom row of Figure 1), would be less susceptible to overfitting
and local classification errors due to its reliance on the consensus of
multiple training data points.

While simple nearest neighbour classification schemes may be
easy to envision and intuitively understood for simple problems such
as that of Figure 1, the behaviours of deep-neural-network-based
classifiers on real-world problems are not. This paper studies the
impact of having mislabelled training data by artificially corrupting the
training data from a familiar benchmark dataset, MNIST [9], and then

*Indicates equal contribution, joint first-authorship.

Outliers Label Errors

D
at

a
po

in
ts

1-
N

N
5-

N
N

Fig. 1: Training data may contain both outliers and label errors. The
two columns include versions of a 2-class dataset: one with outliers
and the other with label errors. The first row shows the data points,
while the subsequent rows show nearest-neighbour (1-NN) and 5-
nearest-neighbour (5-NN) classification regions. Data point shape
(circle vs. triangle) indicates true class and colour (red vs. blue) in-
dicates ground truth label. Outliers and mislabelled data may appear
to be similar, but arise from completely different causes.

training and evaluating a simple CNN model. By setting the corruption
rate, evaluations of model overfitting are made in a very controlled en-
vironment. Techniques shown here may also lend themselves toward
the determination of whether a particular model type may be more or
less robust to the presence of training label errors.

2 Background

As introduced in Section 1, biological data are especially prone to
mislabelling due to their complex nature. In particular, the BIOSCAN
project [10] is an ecologically important and relevant research effort
in which the presence of label errors must be considered. In the
BIOSCAN project, insects are hand-labelled by taxonomic experts
who make their assessment based on captured images. The main
difficulty here, ignoring the requirement for a high level of expertise,
is the lack of consensus and certainty about the taxonomy of life itself
(i.e., the locations and numbers of branches / subcategories within
the tree-like hierarchy). Fundamentally, the taxonomic categorization
of life is based on theory more so than an observable underlying struc-
ture. Indeed, much controversy may be found within the community of
taxonomists! Nonetheless, it is accepted that a hierarchical structure
does exist and may eventually be largely uncovered. Therefore, the
notion of what should be considered an error is somewhat vague. Er-
rors may arise as a result of human error (e.g., labelling two examples
of the same species as being of different taxa), or as a result of simply



not knowing in which category a given example belongs (e.g., labelling
an example (or entire group of examples) as being part of a given cat-
egory, when in fact it would better fit elsewhere). In the BIOSCAN-1M
Insect Dataset, the error rate is unknown; however, there is no doubt
that some errors are present.

To address the presence of label errors, in 2021, Northcutt et al .
developed a method for automatically detecting and correcting errors
in training data, known as Confident Learning [5, 11]. In doing so,
benchmark datasets including MNIST [9], CIFAR [12], ImageNet [6],
and more were examined, and possible mislabelled examples were
identified. Crowd-sourcing (Mechanical Turk) was then used both to
verify which selected examples were indeed incorrectly labelled, and
to propose a corrected label through consensus. These results are
available at labelerrors.com and provide a valuable resource for
those in the field. While this work provides one possible path for-
wards in contending with label errors in training data, little is known
about the behaviour and robustness of specific deep neural network
architectures in terms of handling label errors.

3 Preliminary Experiments & Results

Experiments are conducted upon the MNIST dataset, known to have
a very low error rate (0.15%) [5] due to its simplicity. To evaluate
the impact of having increased error rates on model accuracy, the
training partition of the dataset is artificially corrupted. Data are re-
labelled according to a specified corruption rate, rc ∈ [0,1]. Whether
any given example is re-labelled is determined randomly according to
whether a random number drawn (from a uniform distribution) is less
than rc. In this manner, over large quantities of data, the proportion of
re-labelled data approximates rc. Note that if selected, an example’s
label is necessary changed, i.e., made incorrect. Throughout all ex-
periments, model and training hyperparameters are set according to
values specified in Table 1. To keep experiments simple, a minimalis-
tic model based on an introductory example from PyTorch [13] capa-
ble of achieving > 99% accuracy on the MNIST dataset was selected.
The model used is a CNN consisting of two convolutional layers, fol-
lowed by max pooling, dropout, a fully connected layer, dropout, and a
final fully connected layer. In total, the model has only 1.2 M trainable
parameters.

Table 1: Hyperparameters used for experiments.

Parameter Setting
Loss function Cross-Entropy
Optimizer SGD with momentum
Learning rate 0.01
Momentum 0.9
Batch-Size 64
Num. Epochs 12

Firstly, the model validation accuracy is examined as a function
of training data corruption rate, shown in Figure 2. Observe that ac-
curacy remains approximately steady and high (over 95%!) until a
corruption rate of approximately rc = 0.9, where an abrupt downward
change occurs, before settling-out once again. This finding is quite
remarkable, given that the model continues to be accurate even when
most training data is mislabelled! The abrupt change seems to corre-
spond to the transition point at which for any class, the number of
labels indicating the correct class equals the number of labels for
any other, incorrect, class. Before this point, the model still tends
to learn the correct class-label association, and performs quite well.
After this point, the model has overfit to the mislabelled data and per-
forms poorly during testing. In terms of the number of classes within
the dataset (M = 10, for MNIST), the relationship determining the lo-
cation of this catastrophic change in model behaviour appears to be
r′c = 1−1/M.

To verify the relationship between the location of the abrupt
change and the number of classes, a similar experiment over which
the number of classes is artificially reduced is conducted. Here, ac-
curacy results for the original 10-class problem are shown alongside

Fig. 2: Model accuracy as a function of training data corruption rate.
Accuracy remains remarkably high even when most training data are
mislabelled! Until the corruption rate nears 0.9, model performance is
hardly affected. Beyond this point, there becomes fewer labels of the
correct class than any other, incorrect, class, and accuracy plummets
towards zero.

those of a 6-class and 2-class problem. In each case, for the general
M-class problem, examples from the first M classes of MNIST are
retained, omitting the remainder. Figure 3 shows the results of this
experiment which indeed confirm that the point at which the catas-
trophic change occurs is related to the number of classes through
r′c = 1−1/M.

To gain further insight, training and testing loss are examined in
Figure 4. Notice that while both losses do increase with increasing
corruption rate, the testing loss remains below the training loss until a
cross-over point at rc = 0.9, demonstrating for this range of corruption
rates that the model performs better during testing than it does during
training and is able to generalize quite well (i.e., not overfit) in spite
of large quantities of mislabelled data. At rc = 0.9, the cross-over
point, for each true class, there are approximately equal numbers of
training samples labelled as all ten classes, and the model learns to
randomly guess, thereby resulting in equal loss during training and
testing. Beyond the cross-over point, fewer training samples of each
given class are labelled correctly than all other classes, the model
learns to not estimate the correct class (i.e., has overfit to mislabelled
data), training loss plateaus, and testing loss spikes.

4 Discussion

In Figure 2, accuracy tapers quite gradually for modest (i.e., realis-
tic) corruption rates, for example 0.05 < rc < 0.3. This insensitivity
to corruption rate indicates that the model is able to generalize well,
and may be a feature useful as a point of comparison between model
types. Models for which accuracy decreases at a greater rate would
have a greater tendency to overfit and would generalize more poorly
than those models for which accuracy decreases more gradually.

Comparing loss with accuracy, in Figure 4, loss increases grad-
ually with corruption rate, when meanwhile in Figure 2, the accuracy
is almost invariant to corruption rate until a point at which there is a
catastrophic and large change. This behaviour in accuracy seems to
contradict what is seen in the loss:

Why is it that loss changes by only a small amount (specifically
surrounding the rc = 0.9 point) when yet accuracy rapidly plummets

from near 100% to near 0%?

This is a result of how inference is performed and how cross-entropy
loss is defined. The model outputs (after running through SoftMax)
a set of predicted class probabilities, { p̂i}i∈[1,10]. The class with the

labelerrors.com


Fig. 3: Similar to the accuracy vs. corruption rate plot of Figure 2,
model accuracy is evaluated for a 10-class, 6-class, and 2-class prob-
lem. For the 10-class problem, the abrupt change occurs at a corrup-
tion rate of approximately 0.9, whereas for the 6-class problem, the
abrupt change occurs at only 0.83, and for the 2-class problem, al-
ready at 0.5. This location follows a trend specified by r′c = 1− 1/M,
where M is the number of classes.

highest predicted probability is selected as the inferred class for a
given input, i.e.,

predicted class = argmax
i

p̂i. (1)

So long as the predicted probability for the correct class, p̂c, is slightly
higher that that of all others p̂i, i ̸= c, the network will infer the cor-
rect class. As corruption rates increase towards rc = 0.9, fewer and
fewer samples are correctly labelled, and the predicted class proba-
bilities tend towards that of a uniform random distribution. Just prior
to rc = 0.9, the amount of correctly labelled data slightly exceeds the
amount of incorrectly labelled data for each label, the predicted class
probability for the correct class, p̂c, generally slightly exceeds that of
all others (just greater than 0.1), and the model tends to still correctly
classify testing data correctly. However, cross-entropy loss computes
the negative natural log of the predicted correct class probability, p̂c,
averaged over all samples, indexed by n, in a batch of size N,

JCE =− 1
N

N

∑
n=1

ln(p̂c). (2)

Notice that − ln(0.1) ≈ 2.3026, almost exactly the loss seen at the
cross-over point, at rc = 0.9. The negative log of the predicted cor-
rect class probability, − ln(p̂c), is smooth and does not exhibit large
change surrounding the point p̂c = 0.1, whereas the highly non-linear
class selection method of Equation (1), which simply selects the class
with highest predicted probability, abruptly changes as p̂c decreases
below 0.1, leading to a near instantaneous loss in accuracy.

While it is totally unrealistic to assume that models are being
trained with data having error rates towards rc = 0.9 in practice, the
resulting observed trends in accuracy vs. corruption rate do reveal
a great deal about the robustness of a particular model to the pres-
ence of label errors. Having robustness to mislabelled data indicates
that a model is better able to generalize, and not overfit to mislabelled
data. While only one model was explored in this study, this type of
approach may be used to analyze and compare other prospective
models for use in more complex classification problems in the real
world, allowing a designer to discover which models or architectures
are most susceptible to overfitting the dataset at hand, and select the
most suitable one.

Fig. 4: Training and testing loss as a function of corruption rate. Ob-
serve the cross-over point at rc = 0.9, whereby testing loss begins to
exceed training loss. Training loss tends to plateau as false-labels
tend towards being fully uncorrelated and then anti-correlated with
the data itself, i.e., random but not correct. Testing loss initially is
below training loss, as the model is still able to partially learn the
correct class-label relationships (given that most data is still correctly
labelled); however, beyond the cross-over point, most data is not la-
belled correctly, the model learns to not estimate the correct class,
and testing loss spikes.

5 Conclusion

This study investigated the impacts of the presence of label errors in
training data on model accuracy and training and testing loss. A sim-
ple CNN model was used, with data artificially corrupted in the MNIST
dataset. Remarkably, the model continued to perform with high accu-
racy (over 95%) even when most training data was mislabelled! While
cases of data with large error rates are highly unlikely in practice, sim-
ilar investigations may be useful for machine learning engineers to
learn more about which model architectures tend to generalize better
and can be used to avoid overfitting to mislabelled data.

Much future work remains in the study of label errors and model
overfitting. Investigations of

• more complicated models and classification problems
(datasets),

• non-uniform error distributions (since label errors in real data
are likely to exhibit some correlation), and

• constraints that may induce overfitting (e.g., limiting the amount
of data)

will be performed in order to better understand the architectural fea-
tures that make certain models more robust.

Acknowledgments

This research was enabled in part by support provided by Calcul
Québec (calculquebec.ca) and the Digital Research Alliance of
Canada (alliancecan.ca).

We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), NSERC-PGS D, and
NSERC Discovery Grant, funding reference number RGPIN-2020-
04490.

Cette recherche a été financée par le Conseil de recherches en
sciences naturelles et en génie du Canada (CRSNG), CRSNG-ES D,
et CRSNG Subvention à la Découverte, numéro de référence RGPIN-
2020-04490.

calculquebec.ca
alliancecan.ca


References

[1] V. Nasteski, “An overview of the supervised machine learning
methods,” Horizons. b, vol. 4, pp. 51–62, 2017.

[2] A. Mathew, P. Amudha, and S. Sivakumari, “Deep learning tech-
niques: an overview,” Advanced Machine Learning Technologies
and Applications: Proceedings of AMLTA 2020, pp. 599–608,
2021.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016. [Online]. Available: http://www.deeplearningbook.
org

[5] C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label
errors in test sets destabilize machine learning benchmarks,”
NeurIPS 2021 Datasets and Benchmarks Track, 2021.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
genet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee,
2009, pp. 248–255.

[7] Z. Gharaee, Z. Gong, N. Pellegrino, I. Zarubiieva, J. B. Haurum,
S. C. Lowe, J. T. McKeown, C. C. Ho, J. McLeod, Y.-Y. C. Wei
et al., “A step towards worldwide biodiversity assessment: The
bioscan-1m insect dataset,” arXiv preprint arXiv:2307.10455,
2023.

[8] N. Pellegrino, Z. Gharaee, and P. Fieguth, “Machine learning
challenges of biological factors in insect image data,” Journal of
Computational Vision and Imaging Systems, vol. 8, no. 1, pp.
34–37, 2022.

[9] L. Deng, “The mnist database of handwritten digit images for
machine learning research,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[10] “BIOSCAN,” Jun 2022. [Online]. Available: https://ibol.org/
programs/bioscan/

[11] C. Northcutt, L. Jiang, and I. Chuang, “Confident learning: Esti-
mating uncertainty in dataset labels,” Journal of Artificial Intelli-
gence Research, vol. 70, pp. 1373–1411, 2021.

[12] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” Tech. Rep., 2009.

[13] PyTorch, “Basic mnist example,” Sep 2022. [Online]. Available:
https://github.com/pytorch/examples/tree/main/mnist

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://ibol.org/programs/bioscan/
https://ibol.org/programs/bioscan/
https://github.com/pytorch/examples/tree/main/mnist

	Introduction
	Background
	Preliminary Experiments & Results
	Discussion
	Conclusion

