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Abstract

Real data containing sensitive or personal data often requires lengthy
approval processes and stringent restrictions for access. Synthetic
data that resembles the real data and is generated from the real
data following findable, accessible, interoperable, and reusable (FAIR)
standards is a promising approach to open data for administrative
data. Although progress has been made in establishing accepted
evaluations for synthetic data models, missing are key holistic met-
rics for policymakers to aid their decision-making on open data initia-
tives. In this paper, we introduce and demonstrate a privacy risk with
an identity disclosure risk (IDR) assessment, a quantitative measure
of univariate distribution in Hellinger distance (HD), and a quantita-
tive bivariate measure of differential pairwise correlation (DPC). By
including our introduced privacy, univariate, and bivariate metrics in
standard synthetic data evaluation, synthetic data models and meth-
ods can be better understood and utilized by policymakers in pursuit
of open data.

1 Introduction

In many cases, the challenge for AI researchers and developers is
not a shortage of data but instead getting access to data. Adminis-
trative data collected by public services such as health, education, or
employment are increasingly being used by researchers, developers,
and policymakers for the benefit of society [1]. As administrative data
collected by public services often contain sensitive or personal data,
lengthy approval processes, and restrictions are in place to access the
de-identified data securely [1, 2]. As accessing administrative data for
research has complex requirements and takes time, administrative
data has become a critical component of open data initiatives [3–5].

Synthetic data is an approach to open data that can transform
highly restrictive administrative data to instead be findable, accessi-
ble, interoperable, and reusable (FAIR standards) [6, 7]. Advance-
ments in deep learning (DL) synthetic data generation such as CT-
GAN [8] and REalTabFormer [9] have enabled the pursuit of open
data through the creation of synthetic administrative data. Although
progress has been made in establishing accepted benchmarks and
metrics for evaluating competing synthetic generation DL models such
as machine learning efficiency (MLE), distribution plots, and discrimi-
nator measures [9–13], these accepted benchmarks and metrics are
not designed to inform policymakers nor are motivated by the pur-
suit of open data initiatives [14]. Holistic measures on the utility, the
suitability of the dataset for a task, quality, the integrity and complete-
ness of the dataset, and the risks and recommendations are neces-
sary metrics for policymakers in pursuit of open data initiatives [15].
Still missing from the accepted benchmark and evaluation of synthetic
data methods in DL literature are measures of privacy risk, a quanti-
tative measure of distribution, and a quantitative measure of correla-
tions, that provide additional meaningful context to policymakers [14].

In this paper, we demonstrate additional measures to the evalu-
ation of synthetic data DL methods in terms of privacy risk with an
identity disclosure risk assessment (IDR) [16], a quantitative mea-
sure of distribution in Hellinger distance (HD) [17], and a quantita-
tive bivariate measure of differential pairwise correlation (DPC) [18].
We demonstrate these additional metrics by training, generating, and
evaluating synthetic data from a simulated real health dataset based
on MIMIC-IV [7] using DL methods CTGAN [8] and REalTabFormer
(RTF) [9]. We hope that with the measures introduced in this paper,
synthetic data DL research can be better assessed and understood
by policymakers in the pursuit of open data initiatives.

2 Methods

2.1 Simulated Real Dataset

A real health dataset is simulated from MIMIC-IV to be used to gener-
ate synthetic data. Fields of ethnicity, gender, death, religion, marital
status, insurance, and age are sampled from MIMIC-IV to create a
profile for each patient. Additional binary flags for select diagnoses
of sepsis, birth, chest pain, hypertension, and overdose are recorded
for each patient over all their admissions. The simulated real dataset
contains 58,977 rows of patients.

2.2 Models

2.2.1 CTGAN

The base CTGAN model [8] is used with no modification. After train-
ing for 75 epochs, 58,977 synthetic data points are sampled from the
model. Default learning rates of 2e-4 are used for both the genera-
tor and discriminator. Default decay rates of 1e-6 are used for both
the generator and discriminator. A batch size of 500 is used during
training.

2.2.2 REalTabFormer

The base REalTabFormer (RTF) model [9] is used with no modifica-
tions. After training for 100 epochs, 58,977 synthetic data points are
sampled from the model. A batch size of 256 is used during training.
Default hyperparameters other than epochs and batch size are used
during training.

2.3 Additional Measures

2.3.1 Identity Disclosure Risk (IDR) Assessment

Identity disclosure risk (IDR) [16] is a framework to evaluate the pri-
vacy and re-identification risk of the generated synthetic data. Con-
cerns about privacy are a key obstacle to the adoption of Open Data
initiatives by organizations [19, 20]. Policymakers require measures
of privacy risk such as IDR to assess privacy concerns of synthetically
generated data for purposes of Open Data.

Identity disclosure risk takes into consideration privacy attacks de-
fined as identity disclosure as well as attribution risk. Identity dis-
closure is the risk of correctly mapping a synthetic record to a real
person and vice versa [16]. Attribution risk, conditional to identity dis-
closure, is defined as an adversary learning a certain characteristic
about a real person [16]. The risk score can be simplified to two parts:
Real-to-Synthetic Identification Risk, and Synthetic-to-Real identifica-
tion Risk. The maximum of both of these risks is taken to be the
overall risk of the synthetic dataset. Under the guidance of the Eu-
ropean Medicines Agency (EMA) and Health Canada, an acceptable
risk threshold of 0.09 is used [21]. The IDR risk is expressed in eq. 1
[16].
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N,n is the number of records in the real dataset and synthetic
datasets respectively, Fs, fs is the size of the set of records with the
same quasi-identifier values as record s in the real data and synthetic
data respectively, and Is is the binary indicator of whether a record s in
the real data matches a record in the synthetic data. Quasi-identifiers
are defined as a subset of variables that are known by an adversary



Fig. 1: Hellinger Distance for CTGAN and REalTabFormer (RTF) generated synthetic data over all data fields.

Fig. 2: Distributions of Age comparing synthetic data generated from
CTGAN to the simulated real data.

[22]. The Synthetic-to-Real identification risk is the first sum in Eq. 1
while the Real-to-Synthetic risk is the latter. For the IDR computations
completed in this paper, ethnicity, gender, death, religion, and marital
status are considered quasi-identifiers that an adversary knows.

2.3.2 Hellinger Distance (HD)

Hellinger distance (HD) quantifies the similarity between two prob-
ability distributions [17]. Quantifiable and standard measures such
as HD provide open data policymakers additional context alongside
visual comparisons of real and synthetic data probability distribu-
tions. Given two discrete probability distributions P = {p1, p2, ..., pn}
and Q = {q1,q2, ...,qn}, the HD between P and Q is expressed in eq. 2.
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HD provides a summary statistic of differences between each vari-
able in the real and synthetic datasets. HD scores range between 0
to 1, where values closer to 0 are desired as they indicate lower dif-
ferences in the distribution between real and synthetic datasets [22].

Fig. 3: Distributions of Age comparing synthetic data generated from
RTF to the simulated real data.

After calculating the HD for each variable for the real and syn-
thetic datasets, we carried out an overall assessment of the HD for
all variables, the median and the interquartile range for the real and
synthetic data were computed and assessed to check their proximity
to 0. A high-utility dataset should have an overall average HD score
closer to 0 [22].

2.3.3 Differential Pairwise Correlation

Synthetic data that closely resembles real data should have similar
bivariate pairwise correlations. In combination with the univariate
HD metric, DPC provides a bivariate metric for open data policymak-
ers to utilize as a standard to better compare synthetic datasets. If
the real and synthetic datasets had high fidelity (i.e., the synthetic
dataset closely resembled the real dataset), then the absolute differ-
ence would be close to 0 or very small.

For any fields containing continuous variables, the differential pair-
wise correlations in the real and synthetic data were evaluated to ob-
tain fidelity in terms of bivariate statistics as shown in eq. 3.

∆CVcontinuousXY = |ρXY real −ρXY synthetic | (3)



Fig. 4: Boxplot of Hellinger Distances for CTGAN and REalTabFormer
generated synthetic data.

Table 1: Evaluations of Synthetic-to-Real (S-R) IDR, Real-to-Synthetic
(R-S) IDR, average HD, and average DPC for synthetic data gener-
ated by CTGAN and REalTabFormer.

Model S-R IDR R-S IDR Avg. HD Avg. DPC
CTGAN 0.005 0.013 0.056±0.048 0.029±0.029
RTF 0.004 0.020 0.033±0.034 0.014±0.012

In eq. 3, X and Y denote the two continuous variables, whereas
ρXY is the Pearson correlation coefficient for X and Y . The Pearson
correlation coefficient is used as it can be well-defined over continu-
ous variables in the real and synthetic data. In contrast, for categorical
variables, the absolute differences for Chi-square statistics in the real
and synthetic data are evaluated as shown in eq. 4

∆CVcategoricalXY
= |χ2

XY real
−χ

2
XY synthetic

| (4)

In eq. 4, X and Y denote the two categorical variables, whereas
χ2

XY is the χ2
XY statistic for X and Y . The χ2 coefficient is used as it is

well-defined over categorical variables in the real and synthetic data.

3 Results & Discussions

As discussed in the previous sections, the synthetic data generated
using the two algorithms (CTGAN and RTF) are compared using eval-
uation metrics, which include Hellinger distance (HD), differential pair-
wise correlation heatmap, and Identity Disclosure Risk (IDR) Assess-
ment scores. Summary statistics of HD, and DPC from Table 1 show
that RTF is better able to create synthetic data that resembles the real
data compared to CTGAN. The difference in average DPC between
CTGAN and RTF is statistically significant with a p-value of 7.8E − 4.
The difference in average HD between CTGAN and RTF was not
found to be statistically significant. The improved performance of RTF
over CTGAN could be due to mode collapse of the CTGAN model [8].
Comparing Figure 2 and Figure 3, we can see that RTF better models
distributions of age given non-mode values compared to CTGAN.

Figure 4 shows that the average HD is much lower for RTF com-
pared to CTGAN. Figure 1 shows that RTF outperforms CTGAN for
HD in all fields except for ethnicity and religion. Comparing distri-
butions in figure 2 and figure 3 for CTGAN and RTF, HD is able to
quantify a 72% improvement in the synthetic data generated by RTF
compared to CTGAN for age. In general, we can see that RTF is
able to generate data that better univariately resembles the real data
compared to CTGAN.

Although the overall IDR is higher for RTF compared to CTGAN
(0.02 vs 0.013) (figure 1), given an acceptable privacy risk threshold of
0.09 as deemed by EMA and Health Canada, synthetic data produced
by both CTGAN and RTF falls within this acceptable threshold. Both
the synthetic data generated by RTF and CTGAN acceptably preserve
the privacy of patients in the simulated data.

Comparing DPC for CTGAN and RTF (figure 5 and 6), we can see
that RTF is better able to model correlations between fields compared
to CTGAN. The improvement in average differential pairwise correla-
tion between CTGAN and RTF is shown in table 1. In general, we can
see that RTF is able to generate data that better bivariately resembles
the real data compared to CTGAN.

Fig. 5: Differential Pairwise Correlation Heatmap for feature correla-
tion using CTGAN. The legend is as follows: (1) Ethnicity, (2) Gender,
(3) Mortality, (4) Religion, (5) Sepsis, (6) Newborn, (7) Chest Pain, (8)
Hypertension, (9) Overdose, (10) Marital Status, and (11) Insurance.

Fig. 6: Differential Pairwise Correlation Heatmap for feature correla-
tion using RealTabformer. The legend is as follows: (1) Ethnicity, (2)
Gender, (3) Mortality, (4) Religion, (5) Sepsis, (6) Newborn, (7) Chest
Pain, (8) Hypertension, (9) Overdose, (10) Marital Status, and (11)
Insurance.

From a policymaker’s perspective, synthetic data from both RTF
and CTGAN can be released given their acceptable IDR assessment
below the 0.09 threshold deemed by Health Canada and EMA. Com-
paring HD and DPC scores between RTF and CTGAN, the synthetic
data generated from RTF better models the real data both univari-
ately and bivariately through pairwise correlations when compared to
CTGAN. As an open data policy, based on our analysis, it is more
favourable to release synthetic data generated from RTF as open data
for the simulated real data compared to the CTGAN-generated syn-
thetic data.

4 Conclusion

In this paper, we introduce and demonstrate additional privacy, uni-
variate, and bivariate synthetic data evaluation metrics for the purpose
of accelerating Open Data. Additional evaluations of a privacy met-
ric of identity disclosure risk (IDR), a univariate measure of Hellinger
distance (HD), and a bivariate measure of differential pairwise corre-
lations (DPC) can aid policymakers in open data decision-making. By
including our introduced privacy, univariate, and bivariate metrics in
standard synthetic data evaluation, synthetic data models and meth-
ods can be better understood and utilized by policymakers in pursuit
of open data.
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