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Abstract

The main goal of image captioning, a combination of computer vi-
sion and NLP, is to provide interpretations of the image in the form
of meaningful captions in an automated manner without human in-
tervention. This work provides insight into utilizing a soft-attention
mechanism that enables a model to understand how to generate de-
scriptive captions automatically. We considered two approaches -
word embeddings trained from scratch and pre-trained GloVe word
embeddings to understand if pre-trained vector representations help
achieve more meaningful and correct caption expressions than vector
representations trained from scratch. This study used visualization to
demonstrate how the attention model could concentrate on critical el-
ements of the image while producing the words that corresponded in
the output sequence. The research visually represents the captions
created by the word embeddings trained from scratch and the pre-
trained GloVe embeddings. Evaluation using standard BLEU metrics
has demonstrated that our technique significantly enhances model
performance.

1 Introduction

Automatically creating captions for images is crucial to scene inter-
pretation, one of computer vision’s main objectives [1–3]. Creating
image captions can help visually impaired users and make it simple
for people to browse and organize vast volumes of usually unstruc-
tured visual data. In addition to being able to identify the objects in an
image using computer vision, caption generation models also need
to capture those objects’ connections in natural language. Therefore,
caption generation has typically been seen as a challenging subject.
This is a significant challenge for machine learning and AI research
since it equates to imitating the exceptional human capacity to
condense enormous quantities of crucial visual information into
descriptive language.

Most image captioning models [4, 5] in addition to an attention
mechanism, utilize an RNN [6] or LSTM for the decoder to generate
a sequence of words for creating the captions. These architectures
use the input captions to generate the word sequences, sending
the words to the output not as a string of words but as a vector
of numbers, wherein each word is given an index number before
the word embeddings are created. These indexed words may
be trained from scratch to obtain word embeddings using either
representation that has already been assigned to each word or
representations that have been customized for the model during
training. Finding a relationship between word vectors and numerical
vectors may be done in various ways. One-hot encoding is one of the
simplest methods, whereas GloVe [7] is a more sophisticated method.

Motivated by recent developments in caption generation and in-
spired by recent successes in applying attention to object recognition
[8, 9] and machine translation [10], this paper focuses on models that
can pay attention to the salient part of an image while creating its
caption. The following are the contributions of this paper:

• Introduce an attention mechanism that uses a SoftMax function
to distribute attention among various parts of an image, facilitat-
ing the creation of more descriptive captions.

• By visualizing "where" and "what" the attention was focused on,
the paper demonstrates how to acquire insight and interpret the
findings from this approach.

• Providing insight through visualization on the usefulness of gen-
erating captions through utilizing both word embeddings from
scratch and pre-trained GloVe [7] embeddings.

• Quantitatively validate the usefulness of attention in caption

Fig. 1: The Encoder-Decoder Architecture for the Image Captioning
Model with the Attention Mechanism. The model displays how the
image is first encoded into feature vectors and then passed through
the decoder wherein the weighted average across all pixels is com-
puted by the attention model and this weight along with the previous
hidden states are fed into the decoder for interpreting the next word
for generating the caption.

generation on the Flickr30k dataset using the BLEU [11] met-
rics for evaluation.

2 Methodology

This section details the model’s architecture, which comprises an En-
coder, Decoder, and Attention Network. It also provides details about
the Soft Attention and GloVe Embedding Layer utilized by the model
(Fig. 1).

2.1 Encoder: CNN (Convolutional Neural Network)

The model takes the input as a raw image and generates a caption ‘r’
based on a sequence of ‘1 of K’ encoded words.

r = {r1, ...,rL},ri ∈ RK (1)

where L is the caption length and K is the vocabulary size.
A Convolutional Neural Network (CNN) is utilized to extract the

feature vectors from the image. In particular, 2048 x 14 x 14-
dimensional feature outputs of ResNet-101’s [12] final convolutional
layer were utilized, allowing the decoder to focus on certain regions of
the image by weighing a portion of all feature vectors [8].

2.2 Decoder: Long Short-Term Memory (LSTM) Network)

For the decoder, since a sequence needs to be generated for the
captions, a Recurrent Neural Network (RNN) is considered. Here,
the LSTM cell [13] is used, which generates one word at each time
step conditioned on a context vector, the prior hidden state, and the
previously generated words obtained through the word embeddings
(word embeddings from scratch or GloVe embeddings[7]) for creating
the caption. The LSTM cell outputs for the hidden state ’h’ at time step
’t’ and the cell state ’c’ at time step ’t’ would be,

ht ,ct = fLST MCell(Eyt−1 ,gt ,ht−1,ct−1) (2)

where Eyt−1 is the sequence of word embeddings in the output at
the t −1 time step.

The relevant portion of the input image is continuously repre-
sented by the context vector. The context vector is generated from



Table 1: On the Flickr30k datasets, we compared the performance of the BLEU metrics results on our model (with word embeddings trained
from scratch) termed as ‘Our Method’ and our model (with pre-trained GloVe embeddings) termed as ‘Our Model’ (GloVe) on the Karpathy
Splits [2] and 80/10/10 splits on beam size 1. The measures that do not have scores in the referenced papers have been left empty.

Karpathy Split
Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

Karpathy et al.[2] 0.573 0.369 0.240 0.157
Mao et al.[3] 0.5479 0.2392 0.1952 -

Vinyals et al.[11] 0.663 0.423 0.277 0.183
Soft-Attention[8] 0.667 0.434 0.288 0.191

Our Method 0.6070 0.4252 0.2942 0.2054
Our Model (GloVe) 0.6210 0.4366 0.3015 0.1920

80/10/10/ Splits
Our Method 0.6131 0.4175 0.2794 0.1883

Our Model (GloVe) 0.6295 0.4295 0.2866 0.1920

the features extracted by the feature vectors at different image loca-
tions. To calculate the context vector for each part of the image, the
decoder uses the feature vectors of the last convolutional layer of the
CNN. An attention network is used to compute the weighted average
across all the features in the image to determine the weight of each of
the feature vectors.

At each stage, the next word is created by concatenating this
weighted representation of the image with the word from the word
embeddings that were previously generated. A mean average of the
feature vectors fed through two different single-layer feedforward net-
works predicts the initial memory state and hidden state of the LSTM.

2.3 Word Embeddings

We employ pre-trained word embeddings and those trained from
scratch to process the input word sequence. Obtained an embed-
ding vector of length m for each word, where m in the instance of
pre-trained GloVe embeddings equals 300 and for word embeddings
from scratch equals 512. The LSTM receives a ’n×m’ matrix as input,
where n is the sequence length, and m is the number of features in
the input for a sequence of n words. It can be denoted as,

X = x1,x2, ...,xn (3)

where n is the sequence’s length produced by the embedding
layer.

E = e1,e2, ...,en (4)

where n is the sequence’s length and ei ∈ Rm×K with the embed-
ding dimension as m and the vocabulary size as K.

2.4 Attention Network

Along with the word embeddings from the input sequence, the atten-
tion network also includes the context vector ’ct ’ which is calculated
using the attention network as follows:

ct = A(V,ht) (5)

where V = [v1, . . . ,vk],vi ∈ Rd is the feature vectors, each of which
represents a part of the image in d-dimensional space, ‘ht ’ represents
the hidden state of the RNN at time step ‘t’ and ‘A’ is the attention
function [14].

A single layer neural network was used, followed by a SoftMax
function to produce the attention distribution in the ’k’ areas of the
image given the image feature V ∈ Rd×k and the hidden state ht ∈ Rd

of the LSTM:

gt = phrelu(PvV +(Pght)1) (6)

αt = so f tmax(gt) (7)

where Pv,Pg ∈ Pk×d , and ph ∈ Rk are parameters to be learned.
1 ∈ Rk is a vector to set all elements to 1 and α ∈ Rk is the attention

weight over features in ‘V’. Based on the attention distribution, once
the weights sum up to 1, the context vector ‘ct ’ can be obtained by:

ct = ∑αivi (8)

where αi and vi are a set of feature vectors with their correspond-
ing weights.

To encourage the attention model to pay equal attention to every
part of the image during training, a doubly stochastic regularization
is used. Here, soft attention is considered [8] wherein the attention
weights of the feature vectors ‘v’ in the image sum up to 1 at each
time step ‘t’.

∑αvt = 1 (9)

In this case, however, the attention ∑αvt = 1 does not contain any
constraints. This results in the decoder not attending to certain parts
of the input image. To resolve this a penalty is introduced to the atten-
tion as:

∑αvt ≈ 1 (10)

where attention weights in a single feature vector ‘v’ are encour-
aged to add up to 1 in all timesteps ’T’. By doing this, the model will be
able to pay attention to every feature while generating the entire se-
quence for the caption. This helps to improve performance and allows
the model to generate more descriptive captions [8].

The soft attention model further estimates a gating scalar ‘β ’ from
the prior hidden state ‘ht−1’ at each time step ‘t’ such that,

βt = σ( fβ (ht−1)) (11)

where fβ (ht−1) is a linear transform with sigmoid activation of the
prior hidden state of the Decoder. This gate’s application enables the
attention network to focus more attention on the image’s objects. By
reducing the penalty difference between 1 and the total weight of each
feature across all timestamps, the soft attention network is trained.

2.5 Data, Training, and Validation

The experiments were carried out using the Flickr30k dataset [15].
The 31,783 images in the Flickr30k dataset were taken directly from
six different Flickr groups. Andrej Karpathy’s [2] training, test, and
validation split consisting of 29,000 images for the training, 1014
images for validation and 1000 images for testing sets each were
utilized. In addition to the Karpathy’s [2] split, we also considered a
split of 80/10/10 for training, validation and testing of the Flickr30k
dataset [15].

A single layer LSTM with a hidden state of 512 was used for
the experiments. For the language model and CNN, an Adam
optimizer was considered with base learning rates of 4e-4 and 1e-4,
respectively. The batch size was set to 80 for scratch-trained word
embeddings and 64 for GloVe word embeddings [7]. The training was
carried out for up to 20 epochs. If the validation BLEU scores [16]
did not improve in the last 8 epochs, early stopping was performed.
No fine-tuning was performed on the encoder or the pre-trained word



Fig. 2: Displays the visualization of attention at each time step for
samples from the Flickr30k test data. The image is sampled from the
Flickr30k dataset using word embeddings from scratch for generating
the caption with a beam size of 1.

embeddings.

3 Results

3.1 Quantitative Results

The methods in Table 1 were chosen to compare our method on the
basis of their similarities with our approach, as well as the enhance-
ments the researchers suggested in the current procedures. Karpathy
et al. [2] developed a multimodal recurrent neural network (m-RNN)
architecture using a bidirectional RNN with a hidden layer size of 512
neurons as the decoder and a region convolutional neural network
(RCNN) as the encoder. To extract image features for their m-RNN
model, Mao et al.[3] employ the AlexNet CNN and two levels of word
embedding. To create the caption, the outputs from the second word
embedding layer, RNN, and CNN are combined and sent into the 512-
dimensional multimodal layer.

In their proposed encoder-decoder system, Vinyals et al.[11] used
Inception CNN as the encoder and an LSTM with 512 neurons in
the hidden layer as the decoder. According to Xu et al.[8] for their
attention-based model, the decoder concentrates on certain areas of
the image at each time step to provide captions that are more relevant
to the image. In comparison to all these methods, our method outper-
forms all the other model’s methods for BLEU [16] scores BLEU-2,
BLEU-3, and BLEU-4 with the exception of BLEU-1 using the word
embedding trained from scratch as well as the pre-trained GloVe word
embeddings for beam size of 1, 3 and 5 respectively. The beam size
= 1 provides a fair comparison to the other models as they did not
implement a beam search on their results.

3.2 Qualitative Results

1. Can we leverage attention models to extract main objects
from the images for image captioning?

Fig. 2 provides some examples of the visualization of the
captions generated by the attention model with word embed-
dings trained from scratch for a beam search size of 1. The
white blurred parts of the image indicate where the attention
weights were focused to identify the next object in the image
that needed to be predicted by the model. The model also
outperforms other methods in the BLEU scores in Table 1, in-
dicating that attention enables the model to focus on important
objects in the image based on the image features it is trained
on along with the word embeddings passed in the decoder
with the previous hidden state, enabling the model to generate
better descriptive captions. In Fig. 2 it can be seen that the
model correctly identified a group of people on a snowy path.
This example proves that adding an attention mechanism
into the model does help the Encoder and Decoder model to
identify correct objects from the image when utilizing image
features obtained from ResNet-101 Convolutional Neural

(a)

(b)

Fig. 3: Displays the visualization of the captions generated for sam-
ples from the Flickr30k test data. Fig. (a) Displays the captions gen-
erated by the model where the word embeddings were trained from
scratch for a beam size of 1 and Fig. (b) Displays the captions gener-
ated by the model for the pre-trained GloVe embeddings with a beam
size of 1.

Network.

2. Can pre-trained word embeddings like GloVe enhance the
quality of captions generated by the image captioning model?

From Fig. 3(b) it can be seen that the captions generated by
the model using the GloVe embeddings [7] were able to cor-
rectly identify two men working on the roof and provided a
more descriptive and short caption in comparison to Fig. 3(a)
wherein the captions generated by the model from training
the word embeddings from scratch generated a description
which is longer and not exactly necessary for just describing
the main details in the image. From Table 1 it can also be
seen that word vectors obtained from pre-trained GloVe em-
beddings performed better than the word embeddings trained
from scratch based on the BLEU [16] metric. These examples
show that since GloVe is trained on a large language corpus,
it is able to provide more meaningful captions. This indicates
that utilizing pre-trained word embeddings like GloVe can help
image captioning models provide more semantically correct
captions with greater ability to generalizations when utilized
with an attention mechanism.

4 Conclusion

This research demonstrates how the learned alignments closely re-
semble human intuition and how this learned attention mechanism
may be used to increase the interpretability and generalizability of
the model generation process. Using BLEU measures, the attention-
based model with and without pre-trained word embeddings outper-
formed other prior models in the evaluation of the BLEU-2, BLEU-3
and BLEU-4 scores; however, additional fine-tuning incorporated into
the encoder model could help further improve the results of the at-
tention model. Even though the attention model with and without pre-
trained word embeddings like GloVe was tested on image captioning,
it could still be applied to various other domains in NLP and Computer
Vision.
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