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Abstract

Electroencephalography (EEG) serves as a widely acceptable clini-
cal tool for monitoring and assessing brain activities. In leveraging
artificial intelligence, machine learning techniques have been utilized
for neurophysiological age prediction from EEG data. This research
aims to enhance the transparency of such models, using SHapley
Additive exPlanations (SHAP) to evaluate EEG feature significance.
We employ EEGNet for feature extraction, training predictive mod-
els like Random Forest, Support Vector Regressor, and a Recurrent
Neural Network. Additionally, we incorporate a transformer model for
improved clarity and performance evaluation. Our data, sourced from
public hospitals, indicates that the Transformer model notably excels
in age prediction. This finding underscores the potential for more
transparent machine learning in clinical EEG analysis. Our study
advances the search for more interpretable and accountable mod-
els in healthcare, addressing trust concerns and facilitating informed
decision-making in brain health assessment.

1 Introduction

Hospitals routinely employ electroencephalogram (EEG) recordings
to assess the neurological functions of patients. The copious amounts
of data generated by these examinations present a valuable opportu-
nity for artificial intelligence (AI) to expedite analysis and identify sig-
nificant neuromarkers studied in cognitive and clinical neuroscience.
One of such neuromarkers is ‘brain-predicted age’ or brain age for
simplicity [1]. This brain age holds particular significance as it pro-
vides insights into the ageing process, aiding in the identification of
individuals at heightened risk of age-related cognitive impairments or
clinical alterations and ultimately, mortality [1]. A notable observa-
tion arises when there is a disparity between an individual’s predicted
age and their chronological age, with the predicted age exceeding the
latter. This discrepancy suggests that the individual’s brain may be
aging at an accelerated rate, indicating an elevated risk of neurologi-
cal disorders or cognitive decline [1].

Deep learning (DL) models have seen a growing application in
clinically- and cognitively-relevant prediction tasks using EEG record-
ings. They have emerged as a compelling alternative to the conven-
tional reliance on engineered feature extraction, applied together with
classical (non-neural) machine learning (ML) approaches. DL models,
through training, have showcased their capacity to improve prediction
accuracy by uncovering intricate features within EEG recordings that
might be overlooked by traditional EEG analysis methods [2]. How-
ever, a critical concern associated with these DL models lies in their
inherent lack of transparency, a concern that gains particular signifi-
cance within clinical environments. In healthcare settings, where trust
and transparency are paramount, ensuring the reliability and inter-
pretability of AI models is essential.

When it comes to enhancing the transparency of deep learning
(DL) models, Explainable AI (XAI) techniques step in to provide in-
sights into the inner workings of these models, revealing how they ar-
rive at their predictions. Among the leading XAI techniques, Shapley
Additive explanations (SHAP) stands out as a mathematical frame-
work rooted in cooperative game theory. It assigns a unique value,
known as the Shapley value, to each feature within a prediction, quan-
tifying its contribution to that prediction [3]. SHAP’s capabilities ex-
tend to offering visual interpretations at both local and global levels.

At the local level, SHAP provides in-depth explanations for individ-
ual predictions, indicating why a specific outcome was predicted. On
a global scale, it delivers a comprehensive overview of feature im-
portance across the entire dataset. This dual functionality, enabling
the interpretation of individual predictions and the comprehension of
broader data trends, makes SHAP one of the preferred choices for
investigating model explainability [4].

Another promising approach to achieving greater model trans-
parency is by adopting inherently explainable models, such as Trans-
formers. These models derive their explainability from unique com-
ponents known as attention mechanisms, which allow them to as-
sign varying levels of importance to different input features. While
Transformers have mainly made their mark in revolutionizing predic-
tion tasks related to computer vision and natural language process-
ing, their applicability to decoding EEG signals is gaining traction [5].
These inherently explainable Transformers could bring EEG analysis
to a higher level of transparency, a feature that we explore in our study,
focusing on accuracy in predicting brain age from EEG data.

Our contributions include:
• Significant performance enhancement via Transformers,
• Deep insights into model-input feature relations, and
• Comparative analysis of explainability across ML models.

2 Literature Review

2.1 Machine Learning Models

Traditional machine learning requires feature extraction for large
datasets, with prominent methods being Random Forest Regression
(RFR) and Support Vector Regression (SVR) [6]. In contrast, deep
learning (DL) models autonomously extract features, often outper-
forming classical models, especially in tasks like image classifica-
tion [7]. EEGNet, a specialized Convolutional Neural Network (CNN),
and Long Short-term Memory (LSTM), a Recurrent Neural Network
(RNN), are primary DL models for EEG analysis. EEGNet employs
techniques like batch normalization and dropout for performance [8],
while LSTMs, with better memory, excel at sequential data, even
though they may require more training time [9–11].

In recent years, the transformer architecture, which was originally
proposed for natural language processing tasks, has revolutionized
various domains in AI due to its unparalleled ability to capture global
dependencies in data [12]. Unlike CNNs which sometimes struggle
with perceiving a wide range of internal relationships in data without
deep structures, or RNNs that are constrained by sequential process-
ing, transformers leverage the attention mechanism, making them in-
herently more flexible and efficient [12, 13].

As outlined by the research work in [5], traditional methods
based on CNNs, while efficient, have limitations in recognizing global
EEG dependencies. This is a significant concern given that EEG
paradigms often possess strong overall relationships. They intro-
duced Spatial-Temporal Tiny Transformer (S3T) which taps into the
power of transformers to emphasize and utilize both spatial and tem-
poral features in EEG data. By employing attention mechanisms, it
effectively distinguishes spatial features and perceives global tempo-
ral features, leading to an improved EEG decoding.

Another notable advantage of transformers is their inherent ex-
plainability. The attention mechanism can highlight which parts of
the input data are being focused on for a particular output, allowing



for a degree of interpretability in the results. As EEG analysis often
demands clarity on which brain signals or patterns lead to specific
interpretations or predictions, this feature is invaluable. Given the
promising results of the S3T model on public datasets, it is evident
that transformers hold significant potential for advancing EEG-based
Brain-Computer Interface (BCI) technologies [5].

2.2 Explainability Techniques

Explainable AI (XAI) focuses on clarifying machine learning decisions.
Local Interpretable Model-Agnostic Explanation (LIME) provides local
explanations for any classifier, elucidating individual predictions [14].
While powerful, its insights might not always generalize. DeepLIFT,
more specific to neural networks, back-propagates contributions to
understand feature importance [15]. SHAP, based on cooperative
game theory, presents both global and local model explanations. It
calculates each feature’s significance to a prediction, ensuring bal-
anced attributions [16, 17]. Introduced in 2017, SHAP assesses fea-
tures by their presence versus absence, showcasing their impact on
predictions [4]. Given its comprehensive approach, SHAP was cho-
sen for our study.

SHAP has its theoretical foundation in Shapley values, which
guarantees an equitable distribution of contribution values among the
features. However, a challenge with SHAP is its computational de-
mand, especially for certain model types [3]. The SHAP methodology
uses Shapley values to explain the output of machine learning mod-
els. Each feature gets a value based on its contribution to a specific
prediction, making it evident how each feature influences the model’s
decisions [16, 17]. Launched as a model-agnostic solution in 2017
[4], SHAP interprets the influence of features by evaluating the perfor-
mance difference when a feature is present versus its absence. This
establishes how each feature contributes, either positively or nega-
tively, to the prediction. According to [2], SHAP values are often con-
sidered superior to traditional feature importance techniques. While
feature importance measures the overall influence of features using
metrics like Gini importance, it is specific to certain machine learning
models and does not provide the cooperative context that SHAP of-
fers. This holistic and equitable way of assessing feature impact led
to our selection of SHAP for our study.

3 Materials and Methods

3.1 Dataset

We utilized the dataset from paper [18], comprising EEG record-
ings taken over six years from a public hospital in British Columbia,
Canada. Approved by Simon Fraser University and the Fraser Health
Authority (protocol H18-02728, April 1, 2022), the data includes par-
ticipants aged 15-99. Recorded using Natus Xltek EEG32U ampli-
fiers, sessions varied in duration. For our study’s focus on machine
learning model efficacy, minimal preprocessing in line with [18] was
performed. Data are also bandpass filtered between 0.5 Hz and 55
Hz [19]. Of the 7001 EEG recordings, 5000 were for training, 1000
for testing, and 1001 for validation.

3.2 Machine Learning Models

Adopting the methodology in [18], our EEG brain age prediction in-
volved:

• Preprocessing: Cleaning and resampling EEG data to 128 Hz.
• EEGNet Feature Extraction: Using EEGNet to obtain latent fea-

tures.
• Regression Modeling: Applying RFR, SVR, and LSTM for brain

age prediction.
• Training/Evaluation: Dataset partitioned into subsets, using

Mean Absolute Error (MAE) for training and evaluation. Addi-
tionally, a multi-layer perceptron (MLP) was added to the EEG-
Net model for direct age prediction.

Consistent with [18], machine learning strategies were used:
• Classical Machine Learning: Employed EEGNet for feature ex-

traction, utilizing outputs for RFR and SVR techniques.

• Deep Learning: EEGNet and LSTM were explored for au-
tonomous feature extraction from EEG data, with EEGNet com-
prising convolutions and an added MLP for age prediction.
LSTM, an advanced RNN, identifies data sequence patterns.

• Transformer: Applied the S3T [5] for EEG decoding. It includes
preprocessing, spatial and temporal transformation, with the
goal being classification loss through cross-entropy [5]. Atten-
tion mechanisms in S3T offer insights into EEG signal depen-
dencies, highlighting pertinent model areas for deep learning
explainability [5].

3.3 Explainability

SHAP (SHapley Additive exPlanations) values, rooted in the coopera-
tive game theory’s Shapley values, provide powerful tools for explain-
ing machine learning models. The TreeExplainer [20], as its name
suggests, is designed primarily for tree-based models, offering exact
Shapley value computations. Its strength lies in capturing intricate
feature interactions, giving a clearer perspective on a model’s overall
behavior through the lens of localized explanations [4].

Kernel SHAP, meanwhile, is model-agnostic, serving as a bridge
between the linear explanations of LIME [14] and the Shapley values.
The primary advantage of Kernel SHAP is its emphasis on ensuring
explanations uphold key properties like local accuracy and consis-
tency [4].

Diving deeper, the Gradient Explainer amalgamates the ideas un-
derpinning Integrated Gradients [21], SHAP, and SmoothGrad [22]. It
distinguishes itself by allowing the use of an entire dataset as its refer-
ence background. With its foundational linear assumptions and con-
siderations on feature independence, this explainer calculates SHAP
values, proving invaluable when dealing with neural networks.

In our research, we harnessed these explainers in alignment
with the unique architectures of the specific models being analyzed.
The TreeExplainer was chosen for the Random Forest model due to
its inherent tree-based structure. By leveraging the TreeExplainer’s
adeptness in elucidating interactions and feature dependencies, we
gleaned profound insights into feature significance and the intricate
dynamics between predictors.

For the LSTM, a neural architecture, the Gradient Explainer was
deemed the most suitable. Neural networks, marked by their intricate
mesh of weights and activations, mandate an advanced explanation
strategy. With the Gradient Explainer’s confluence of ideas from In-
tegrated Gradients, SmoothGrad, and SHAP, we could deconstruct
these networks effectively. By referencing the entire dataset as the
background and leaning on its foundational assumptions, the Gradient
Explainer enabled us to extract approximate SHAP values. These val-
ues illuminated the LSTM model’s decision-making process, allowing
us to trace back through neuron layers to spotlight the most influential
features.

In the context of SVR, we opted for the Kernel Explainer, a model-
agnostic tool. It demystified the SVM model’s decisions through ap-
proximated SHAP values, enriching our understanding of how specific
feature values shaped predictions in certain instances. Furthermore,
the Kernel Explainer was also applied to LSTM, Random Forest, and
LSTM models, setting the stage for a comparative analysis against
more specialized explainers.

Table 1: Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Standard Deviation of Absolute Errors (std.), and Training
Times of models evaluated on EEG data.

Model Name MAE RMSE std. Time
EEGNet + LSTM 18.89 22.50 12.28 0:09:06
EEGNet + RFR 18.67 21.95 11.57 0:02:32
EEGNet + SVR 18.70 22.01 11.61 0:00:02
EEGNet + MLP 18.59 21.79 11.30 12:01:29
Transformer 17.22 - - -

4 Results

Inspired by [18], we systematically examined various training meth-
ods for the evaluation of EEG data. We employed the EEGNet archi-



tecture complemented by an Adam optimizer, explored the potential
of LSTM, delved into an ensemble approach with the RFR consist-
ing of 200 decision trees, and also scrutinized the SVR fortified by a
radial basis function kernel. Our observations largely coincided with
the findings presented in [18] with regard to mean absolute errors
(MAEs). In a significant stride forward, we introduced the Transformer
model to our analyses. Remarkably, this model eclipsed its counter-
parts, registering a compelling MAE of 17.22, as depicted in Table 1.
This underpins the capabilities of the Transformer architecture when
applied to EEG data interpretation.

SHAP played a pivotal role in our research, serving as the lens
through which we gained clarity on the decision-making intricacies
of the machine learning models. It also illuminated the ripple effect
each feature exerted on the model’s outcomes. Diving deeper into
the LSTM model, it was meticulously architected incorporating pre-
trained weights. We then orchestrated our dataset to align seam-
lessly with the input shape prerequisites. The LSTM model’s inner
workings were unraveled using a dual strategy: a gradient-oriented
method, leveraging a sample from the dataset as foundational data,
and a kernel-centric approach, which entailed reshaping the dataset,
reminiscent of the adaptations executed for the SVR model.

For the Random Forest model both the TreeExplainer and Ker-
nelExplainer tools from SHAP were harnessed, the former excelling
in speedy calculations for tree-based models, and the latter, with its
model-agnosticism, undertaking elaborate computations to distill the
Shapley values.

Shifting focus to the SVR model, our dataset was meticulously
processed and structured to meet the model’s specifications. The Ker-
nelExplainer played a pivotal role in deconstructing the SVR model’s
decisions post its training phase.

The insights learned from these models were visually represented
through SHAP summary plots, as exhibited in Fig. 1. These plots
offer a insight into feature relevance across a diverse range of time
steps. They illustrate not just the prominence of each feature, but
also the extent and nature of their influence. The plots are structured
with features vertically, and their influence spanning horizontally with
the centering of values around zero indicating minimal influence. Dis-
placements to the right or left revealed the positive or negative contri-
butions of features to the model’s output. This is visually represented
by a color gradient in our plots, with blue signifying lower feature val-
ues and pink indicating higher values, thus providing a spectrum of
feature influence at a glance. The vertical ordering of features in the
plot corresponds to their importance, with the most influential features
based on the SHAP values positioned at the top. This ranking offers a
hierarchy of feature significance, allowing use to quickly identify which
features have the most substantial overall impact on the model’s out-
put.

A recurrent observation across the SHAP analyses was the dom-
inant influence of Feature 104, underscoring its cardinal role. Other
features such as Feature 4, Feature 95, and Feature 7 also frequently
emerged as major contributors. Yet, there were features like Feature
103, Feature 107, and Feature 38, which showcased their influence
predominantly in specific contexts, emphasizing their conditional rele-
vance. These multifaceted insights pave the way for future endeavors
in refined feature engineering and potential avenues for model opti-
mization.

The results from the SHAP analysis inform clinicians about sig-
nificant EEG features that are crucial in predicting brain age. This
knowledge assists in focusing EEG visual inspections on these key
features, enhancing the understanding of age-related brain activity.

As we further analyze our findings, a side-by-side assessment of
the SHAP plots in Fig. 1 offers valuable insights. The Random For-
est visualized in Fig. 1 a) using the TreeExplainer showed clear and
easily interpretable SHAP values for key features. On the other hand,
Fig. 1b) which utilized the KernelExplainer for the same model, pro-
vided a broader understanding of how features interact. Moving to
the LSTM results, Fig. 1 c) GradientExplainer clearly highlighted how
primary features affected the outcomes. Meanwhile, Fig. 1 d) Kernel-
Explainer presented a more detailed view, requiring a closer look to
grasp its intricacies. In conclusion, while tools like the TreeExplainer
and GradientExplainer offer direct insights, the KernelExplainer pro-
vides a more detailed understanding, highlighting the importance of
selecting the right tool for interpretation. These findings pave the way
for improved approaches in future EEG data studies.

5 Conclusion

In this study, we explored the potential of the Transformer model in
decoding EEG signals. While various deep learning and classical ma-
chine learning techniques were evaluated, it was the Transformer that
showcased a boost in performance. While performance is a critical
aspect, model transparency is equally essential. As we delve into the
complexities of deep learning, it becomes increasingly important to
comprehend the underlying factors influencing a model’s conclusions.

The intricate decision-making processes of our models were un-
raveled using SHAP. This powerful tool allowed us to delve deep into
the models, shedding light on the influence of individual features, and
elucidating their roles in predictions. Our SHAP analyses revealed
not only the overarching importance of certain features but also the
nuanced interplay between them, enhancing our understanding of the
models’ inner workings. While our initial findings have been enlight-
ening, they also pave the way for future exploration. The immediate
trajectory of our research will be a deep dive into the attention mech-
anisms inherent to the Transformer. We believe that by unraveling
these mechanisms, we can glean richer insights into how the model
interprets EEG signals, ultimately bridging the gap between raw per-
formance and transparent decision-making.
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