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Abstract

Gait age estimation aims to predict a person’s age using visual surveil-
lance information. One popular approach involves using Gait Energy
Images (GEIs), which capture the essence of an individual’s gait for
analysis. Nonetheless, training a model from scratch demands con-
siderable computational resources and extensive data. In contrast to
the traditional approaches, we utilized pre-trained vision transformer
(ViT) models to enhance the performance. We froze the backbone of
the pre-trained transformers and assessed their capabilities in zero-
shot tasks by training regression heads on a compact dataset. Our
approach yielded an optimal model with the best Mean Average Er-
ror (MAE) of 10. The findings suggest that the advanced ViT models
can effectively carry out zero-shot predictions in gait recognition tasks
while maintaining low computational demands and utilizing minimal
datasets. We expect that the research findings will provide an insight
into vision transformer-based gait recognition for future research and
applications.

1 Introduction

Gait recognition, in general, refers to a biometric application that aims
to identify pedestrians by their walking patterns [1]. This paper fo-
cuses on the application of gait recognition for the purpose of age es-
timation. Accurately estimating the ages of individuals within a crowd
has diverse applications, including enhancing public security, refin-
ing marketing strategies, improving aging healthcare, and informing
urban planning initiatives. Gait recognition as the medium for estimat-
ing age offers two outstanding advantages: it is relatively low-cost and
it requires less cooperation from individuals, especially compared to
other methods such as surveys or facial recognition.

For several years, strategies employing deep convolutional neu-
ral networks (CNNs) with Gait Energy Image (GEI) [2] as input have
been prominent in addressing the challenge of age prediction from
gait [3–7]. However, all CNN-based methodologies rely on deep learn-
ing techniques that necessitate training on substantial datasets for
more than 100 epochs [6, 7], resulting in a training process that is
notably time-intensive. This also becomes problematic when there is
not enough data to train a model from scratch.

The Vision Transformer (ViT) [8], which utilizes self-attention
mechanism [9], has recently achieved remarkable success in com-
puter vision. Building on this advancement, the concept of self-
supervised pre-trained models has been introduced [10]. These mod-
els are pre-trained on extensive datasets for general applications and
can be subsequently fine-tuned for a variety of downstream tasks.
Capitalizing on this attribute, we propose an approach to gait recogni-
tion tasks. Our method involves training downstream regressors atop
different pre-trained ViT models, offering a cost-effective and high-
performing solution.

Our research investigates the zero-shot capabilities of pre-trained
ViT models in the context of gait age prediction tasks using GEI. We
establish the baselines for transformer-based gait recognition models
and examine the efficacy of zero-shot ViT models within this domain.
Our contributions are as follows:

• Zero-shot cost-effective approaches using pre-trained models.
• Investigating the capacity of pre-trained vision transformer mod-

els on the gait age estimation task.
• Establishing baseline transformer-based models for future stud-

ies.

Fig. 1: (a) A segment of a binary silhouette gait cycle, which com-
prises a series of continuous human motions. (b) Gait Energy Images
(GEIs) [2]

2 Literature Review

Gait Energy Image Originally introduced by [2], the Gait Energy
Image (GEI) is an effective method that condenses a sequence of a
gait cycle into a singular gait template through a weighted average.
This process of averaging effectively eliminates a significant amount
of noise and compacts time-related information into a singular dimen-
sion, yet preserves a comparable level of information [5]. It is possible
to calculate the GEI in the following manner when the Gait Cycle im-
age sequence is Bt(x,y):

G(x,y) =
1
N

Bt(x,y) (1)

where Bt(x,y) is the context of a series at time t. x and y describe the
coordinates of each frame B or image B, and N is the total number of
images taken in a Gait Cycle [2]. Fig. 1 demonstrates the relationship
between binary silhouette gait cycle and the GEI.

Gait-based Age Estimation In the early stage of machine learn-
ing, age estimation is established on classification tasks using sup-
port vector machines (SVM). Makihara et al. [11] tried to classify gaits
into four classes, namely children, adult males, adult females, and the
elderly using SVM. There are also other studies that tried to classify
gaits into children or adults [12].

With the maturation of deep learning methodologies, researchers
have begun utilizing CNN models as frameworks for conducting gait-
based age estimation tasks. Sakata et al. [13] employed DenseNet
[14] as the backbone, utilizing GEI as inputs, and achieved significant
results. Subsequently, Xu et al. achieved state-of-the-art by inducing
the uncertainty of the estimation using a label distribution framework
on the CNN-based GEISet [3].

Currently, researchers are leveraging the mechanisms of ViT in
gait recognition tasks. [15] had trained end-to-end ViT models in per-
forming the GEI classification tasks and had achieved great results in
comparison to the CNN methods. Nevertheless, all of these models
are end-to-end and need to be trained from scratch. In our work, we
aim to find a way to train simpler models with similar performance.

Vision Transformers Transformers [8] have recently achieved
tremendous success in the field of Natural Language Processing



Fig. 2: We use the freeze pre-trained ViT backbones to encode the
GEI and train a fully connected layer for age estimations.

(NLP). Inheriting the ideas of self-attention and tokenization, vision
transformer [9] (ViT) and its variants have also achieved great results
in the field of image classification. One outstanding variant is the Swin
Transformer [16]. It brings greater efficiency by limiting self-attention
computation to non-overlapping local windows, while also allowing for
cross-window connection by shifting the attention windows.

The concept of self-supervised learning (SSL) has been leveraged
to exploit large amounts of unlabelled or weakly-labeled training sets.
The BEiT v2 [17], following the idea of BERT [18], can perform self-
supervised learning using image token masking and a teacher model.

In our study, we train regression heads on the pre-trained ViT
model and its variant models, leveraging the assertion that self-
attention mechanisms are more adept at capturing abstract features
compared to CNNs [9].

3 Method

3.1 Overview

We implemented three distinct ViT architectures as our backbones:
Vanilla Vision Transformer, Swin Transformer, and the BEiT v2, each
configured to the Base size. Our objective was to devise the most
straightforward downstream structure possible, enabling us to evalu-
ate the zero-shot performance of various ViT models effectively.

Following this, we remove the decoder part of the ViT and freeze
the pre-trained backbone that was previously pre-trained or fine-tuned
on ImageNet21k [19]. The ViT and Swin Transformer were pre-trained
using ImageNet1k and BEiT v2 was pre-trained using ImageNet21k,
which is a larger dataset, and then further fine-tuned on ImageNet1k.
Then we trained a fully connected layer as the regression head that
contains no activation function. The output of the regression head is
the resulting age. Fig. 2 demonstrates the different backbones and
the linear regression. Since the ViT models have not been previously
trained on GEI data, this represents a zero-shot learning scenario for
the ViT backbones.

3.2 Training

To train the model, we first re-scale the GEI images to the size of
224× 224, which is the standard input dimension for the ViT models,
and normalize the pixel value of GEI between 0 and 1. Subsequently,
we replicate the channels to form a three-channel input and feed this
into the ViT models, treating it as a standard RGB image input.

Then we perform batch gradient descent on the last layer of the
model by using a Mean Square Error:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2)

N is the batch size where we used 64, y is the predicted age and ŷ
is the ground truth. During the training, we used an Adam optimizer
with a learning rate of 0.0001 and performed the training process on
an NVIDIA RTX 3060 graphic card.

Method MAE CS(1) CS(5) CS(10)
Conventional methods
MLG[22] 10.98 16.7 43.4 60.8
OPLDA[23] 8.45 7.7 37.9 64.1
OPMFA[23] 9.08 7.0 34.9 64.1
Deep learning methods using CNN
DenseNet[13] 5.79 22.5 55.9 80.4
GEINet[12] 5.43 23.5 61.7 82.5
Zero-shot using pre-trained vision transformers
ViT Base[9] 13.6 4.9 25.44 51.6
Swin Base[16] 13.7 5.0 25.4 51.6
BEiTv2 Base[17] 10.0 6.4 32.2 71.0

Table 1: MAE [Years] and CSs [%] at 1-, 5-, and 10-Year Absolute
Errors. The first 3 methods are the state-of-art methods of conven-
tional approaches. The two methods in the middle are state-of-art
methods for deep CNN approaches and the last three methods are
our approaches using zero-shot backbones.

Fig. 3: The scatter plot of predicted age vs. ground truth. From left to
right: ViT, Swin Transformer, BEiT v2.

4 Experiment

4.1 Dataset

The dataset we used to train and test our model is the OU-ISIR Gait
Database, Large Population Dataset with Age [20], also known as the
OU-ISIR Age dataset. The dataset contains a total of 63,846 subjects,
each labeled with gender and age, with the age range spanning from
2 to 90 years old. This is also the most commonly used dataset in
gait age prediction. The dataset was pre-divided into training and
testing sets by the authors, adhering to a 5:5 ratio. Additionally, we
partitioned the training set into separate training and validation sets
by random sampling, adhering to a 4:1 ratio.

4.2 Result

Since only one layer is required to train, it only takes a few epochs
for the model to achieve full convergence. Following the evaluations
of [3, 13], we also evaluated the performance of all our models by
using mean absolute error MAE= 1

N ∑
N
i=1 |ŷi − yi| [Years] and CS(y) =

N(y)/N [%], where N(y) is the number of samples whose estimation
absolute error is within y years[21]. The MAEs and CSs for 1-, 5-, and
10-year tolerances comparing with different state-of-art methods are
summarized in Table 1.

5 Discussion

In Table 1, we compared the proposed methods against the state-of-
the-art CNN methods, along with a comparison to the conventional
SVR models [22, 23] as baseline models. The result indicates that
the pre-trained ViT model approach is not yet able to outperform the
existing deep CNN approaches. Furthermore, even the most refined
model merely matches the performance of the conventional methods.
This is to be expected, as the competing models are specifically de-
signed and trained for GEI age estimation tasks, while ViT models are
zero-shot to GEIs.

In order to study why there is such a big gap with the CNN method,
we conducted the examination of age-predicted vs. the ground truth,



shown in Fig. 3. It was observed that the model exhibits enhanced
precision in identifying individuals below 20 years of age. However,
for subjects over 20, the model predominantly forecasts ages within
the 20 to 40-year range. Regarding the result, we posit that the dis-
cernible discrepancy in body size between children and adults ac-
counts for the pre-trained model’s ability to identify these larger gaps
effectively, and therefore, a simple head is sufficient to distinguish
them. However, the variation in body size and posture among adults
across different ages is subtle. Consequently, fine-tuning a small head
is insufficient for capturing these finer details.

In comparing various transformer models, we established the
baseline by the vanilla ViT base model and assessed the perfor-
mance of its variants. This comparison aimed to determine whether
enhancements designed to bolster the feature extraction capability of
ViT could yield improved results in GEI-based age estimation tasks.
The comparison shows that there was a significant improvement from
the baseline model ViT, to the BEiT model. This implies that despite
these pre-trained models not having prior exposure to GEI, they still
have the capability to extract relevant features from GEI, which can
assist in performing age estimation tasks. It is also worth mentioning
that BEiT v2 is pre-trained on ImageNet21k using a self-supervised
approach, while the others are pre-trained on the smaller ImageNet1k.
This suggests that exposure to a more extensive dataset may con-
tribute to the enhanced performance of BEiT v2. Furthermore, we
intend to investigate the influence of the training dataset’s size on
zero-shot learning outcomes in the context of self-supervised train-
ing.

6 Conclusion and Future Works

In this paper, instead of performing gait-based age estimation by
building a dedicated CNN deep learning or conventional algorithm,
we focused on pre-trained vision transformers. We used a straight-
forward way to investigate the zero-shot performance of different ViT
models, and hence established baselines for fine-tuning on ViT mod-
els. In the near future, we will try to leverage more pre-trained models
and investigate the application of ViTs in gait recognition.
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