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Abstract

Our goal is to validate the out-of-focus camera calibration methods
proposed by previous authors, and to disentangle variables such
as the effects of image spatial resolution, pattern array size, and
noise that affect camera calibration performance. Using synthetic and
real-world experiments, we compare Phase-shifted Circular Gradient
(PCG) patterns and circle grids to examine their relative calibration
accuracy under out-of-focus blurred conditions. Real-world experi-
ments are performed using a color E-Ink display as the calibration
target, and target positioning is facilitated using a robotic arm. Initial
results show that there is no relative advantage to the phase-shifted
approaches over using a grid of small but still detectable circles, how-
ever, the difference is very small, and it is hypothesized that the E-Ink
display might not work favourably for PCGs due to its inability to ren-
der grayscale patterns without dithering. This work provides a foun-
dation for further investigation to compare real-world and synthetic
cases which could offer additional clues about the effectiveness of
each method and, could highlight how further improvements to accu-
racy can be found.

1 Introduction

For many 3D computer vision-based tasks, it is necessary to find rela-
tionships between 3D points in a scene and corresponding points that
can be detected in a 2D image. To determine these relationships, a
camera’s intrinsic and extrinsic parameters need to be found through
the process of camera calibration. Intrinsic parameters include focal
lengths in x and y directions, and extrinsic parameters refer to the
camera’s location, and pose in 3D space. Applications such as Si-
multaneous Localization and Mapping (SLAM), Structure from Motion
(SfM), 3D reconstruction, and non-contact optical measurement re-
quire frequent translations between 2D and 3D and rely heavily on
high-accuracy estimations of camera parameters.

Camera calibration can be performed under different circum-
stances. In dynamic situations, such as with a drone, mobile robot,
or vehicle, frequent estimation of the intrinsic and extrinsic parame-
ters may be necessitated by an auto-calibration process, which can
rely on natural scene features. Different auto-calibration approaches
can range from analytical methods relying on numerical optimization,
but more recent advances in Deep Learning (DL) have allowed re-
searchers to explore end-to-end data-driven methods where camera
parameters are directly outputted from trained networks [1–3].

In static situations, such as the manufacturing of a new camera
lens system, structured patterns can be used to obtain high accu-
racy one-time camera parameter estimations. Over the years, various
structured patterns have been devised to create 1D, 2D, and 3D cali-
bration targets [4–9], however, 2D planar targets remain the most fre-
quently used due to simplicity and cost-effectiveness. 2D targets can
be categorized based on their ability to emit or reflect light and can be
categorized as active or passive respectively. In most cases, active
calibration targets consist of digital displays such as mobile phone,
laptop, or desktop monitor displays and can display consecutive pat-
terns while being held stationary for each specified pose.

Using 2D targets, the calibration process typically involves captur-
ing several images of the structured pattern in various poses. Using
these images, control points are found by detecting pattern features,
and the control points are provided to an optimization process that re-
fines an initial estimation of intrinsic and extrinsic camera parameters.
Two of the most well-established and frequently referenced methods
are from the work of Tsai and Zhang [7, 9] where Zhang’s method
originally established the use of a checkerboard calibration pattern,
which is still widely used today.

As new applications demand greater camera calibration accuracy,
and flexibility, improved calibration pattern and feature detection meth-

ods remain an active area of research. In particular, long focal length
cameras present special challenges since focused calibration targets
need to be mounted far away from the camera. This can be problem-
atic in space-constrained environments such as a manufacturing floor
or assembly line. Further to this, is the issue of decreasing accuracy
of checkerboard patterns as they are used with increasing levels of
defocus blur. As a workaround, researchers have been trying to find
better ways of performing camera calibration from out-of-focus images
[10–15], which allows the target to be placed closer to the camera.

In this work, we attempt to re-produce some of the aforementioned
research to validate its effectiveness on blurred images. For compari-
son, we use circle grids, which are another commonly used calibration
pattern, to test the effectiveness of these methods. We also attempt
to disentangle calibration variables using synthetic data and real data
facilitated by the use of an E-Ink display target, and the relative re-
peatability of poses that are provided by a collaborative robot arm.

2 Related Work

To overcome the accuracy limitations of checkerboard patterns when
working with out-of-focus images, Wang et al. [10] proposed the novel
use of phase-shifted circular grating (PCG) arrays using a digital dis-
play as an active calibration target. The proposed method works by
creating three separate patterns containing grids of grayscale PCG
circles where each gradient is shifted by 2π/3 . In experiments, an
LCD display was set up and captured in a variety of poses. For
each pose, three images were captured from an SLR camera where
each image corresponded to a respective PCG array pattern. Using a
three-step phase-shifting algorithm, a wrapped phase image was gen-
erated which contains abrupt changes in grayscale intensity that form
pronounced circles (Fig. 1). To account for perspective distortion, an
ellipse-fitting technique was used to recover the circle centers. The
circle centers then underwent sub-pixel refinement and subsequently
were used to calibrate the camera. Wang et al. also demonstrated
that their method was largely invariant to blur when subjected to syn-
thetically blurred images.

Building on this work, Cai et al. [11] proposed a similar method
using PCGs that generate two wrapped phase image discontinuities.
Using this approach, two concentric ellipses are fitted which are used
to compute the imaged center using a theoretically more accurate
geometric-based and algebraically derived representation.

To eliminate the requirement for capturing three consecutive
grayscale PCG patterns, Wang et al. [12] later proposed combining
the three grayscale PCG arrays into a single colour array. To do this,
the pixel intensities for each grayscale image are stored in each of the
three RGB colour channels to create one colour PCG image which
can be separated and reconstructed with the same three-step phase
shifting algorithm.

To determine where possible accuracy improvements to out-of-
focus calibration can be made, we begin by implementing Wang’s orig-
inally proposed method [10], followed by Cai [11], to carefully evaluate
their claims, and better understand the subtleties leading to improved
calibration results.

3 Methods

3.1 PCG Theory

Our work has reproduced the method originally proposed by Wang
et al. [10] with additional synthetic data generation, and real world
experimentation using an E-ink display and collaborative robot arm.

From Eq.1 Three grey-scale phase-shifted circular gradient (PCG)
patterns are created based on pixel intensities I1 to I3:



Fig. 1: PCG Camera calibration method originally proposed by Wang
et al. [10] for accurate camera calibration using out-of-focus images
vs. traditional method using checkerboards


I1(x,y) = A+B cos[φ(x,y)−2π/3],
I2(x,y) = A+B cos[φ(x,y)],
I3(x,y) = A+B cos[φ(x,y)+2π/3],

(1)

Were Eq.2 provides the unwrapped phase, where T is the period,
and (x,y) is the Euclidean distance from any pixel to the circle center.

φ(x,y) =
2πr(x,y)

T
, (2)

PCG images 1 to 3 are repeated in a grid to create three separate
pattern images. The pattern images are captured consecutively for
each pose, and multiple poses with the consecutive pattern images
are captured. Using Eq.3, each set of three images can be combined
to create a wrapped phase image for each pose (Fig. 2).

ψ(u,v) = arctan
(√

3
J1 − J3

2J2 − J1 − J3

)
, (3)

Once the wrapped-phase images are generated for each pose,
feature detection is completed. In this case, the circle centers need to
be identified with sub-pixel accuracy so they can be used as control
points for calibration. Based on Cai et al. [11], to compensate for
perspective distortion caused by pose rotation, we intentionally set
the period T of Eq.2 to a value (proportional to the pattern size) that
will generate two wrapped-phase discontinuity circles. Using these
two discontinuity circles, inner and outer ellipses are fitted.

To fit the ellipses, Gaussian blur is first applied followed by Canny
Edge Detection and contour detection. Contours with five points or
more are then used to generate ellipses. Ellipses that exceed size
and eccentricity criteria are rejected, and the centers of closely over-
lapping ellipses are averaged. With two sets of fitted ellipses (one
inner ellipse and one outer), we compute a corrected center point
using eigenvalue decomposition based on the projection relationship
described in [11], where the last eigenvalue represents the true circle
center.

Fig. 2: Phase-shifting circular gradient method

3.2 Camera Calibration Using Synthetic Images

For initial validation of [10], images were rendered using Blender
Open-Source 3D animation software. Using 4x5 PCG grids, the im-
ages were rendered using three copies of the same animation se-
quence where each of the three grayscale PCG patterns I1 to I3 move
through a series of repeated poses. From the sequences of images,
Eq.3, was used to generate wrapped phase images. Camera calibra-
tion was performed using OpenCV based on [9].

Using Blender’s perspective camera model with a 50mm focal
length, horizontal sensor fit with 36mm width sensor, and F-Stop
= 1, the series of three image sequences were rendered multiple
times with focus distances varying between 4m and 100m to intro-
duce increasing amounts of defocus blur. All images were rendered
as square images with a resolution of 1080 x 1080, which was needed
to allow the fx and fy ground truth focal lengths to be the same. To
verify this, Blender’s internal Python scripting was used to query the
camera model and retrieve the target focal lengths of the virtual cam-
era in the Blender scenes. In the case of all synthetic experiments,
the nominal focal lengths are 1500px for both fx, and fy.

3.3 Camera Calibration Using Real-world Images

Real world experiments were conducted in a lab using a Basler
acA1920-150uc camera with with a C23-5028-5M 50mm focal length
lens. Camera settings were left unchanged, but it should be noted that
the default camera gain created some noticable image noise which af-
fected the captured images of all patterns consistently. The lab light-
ing was tuned to eliminate as much glare as possible on the display
target. Images were captured with a resolution of 1920x1200 px and
the target was a 3200 x 1800 E-Ink display which displayed several
consecutive patterns per pose including grayscale PCGs and circle
grids. All patterns were arranged in a 4x6 grid which was found to
be a good match for the screen’s aspect ratio. The E-Ink display was
mounted onto a Franka Emika Panda 7-DOF collaborative robot, and
configured as the end-effector to compensate for gravity. The arm
was controlled by ROS interfacing with the Panda’s API to move the
display target to it’s planned poses.

The Panda arm was programmed to translate and rotate in-plane
across the camera’s field of view and stop at specified poses. For
each pose, the display was set to cycle through each of the calibra-



Fig. 3: Lab setup for real world PCG experiment using E-Ink display
and Franka Emika collaborative robot arm

Table 1: Table of calibration results using synthetic images generated
in Blender where 4m is in-focus and > 4m is out-of-focus

tion patterns, and the camera captured the respective patterns. The
camera was mounted on a tripod and positioned at a distance of 4m
for in-focus image capture and 3m for out-of-focus capturing which
coincided with the physical limits of the target motion sequence re-
maining in the camera’s field of view. For both distance cases, no
changes were made to the camera’s focus ring or aperture, allowing
the camera system (lens and sensor) to remain with the same effec-
tive focal length. Only the tripod and camera were moved to create
the out-of-focus effect. An example of the lab setup can be seen in
Fig. 3.

4 Preliminary Experimental Results

4.1 Synthetic Image Results

Table 1 shows the synthetic image calibration results using grayscale
PCGs. Each focus distance case represents a sequence of 10 poses
where 4m is in-focus and every distance greater than 4m contains
increasing out-of-focus blur. However, since focal length and focus
distance can be set independently in the Blender scene environment,
the camera remains the same distance from the target while the fo-
cal length is unchanged, and the virtual focus distance is decoupled
from the target allowing for all focus distance levels to have differ-
ing degrees of blur, but with the same size target. This is a unique
characteristic that is only possible in the simulated environment, and
removes the variable of spatial resolution from comparison, since all
target patterns are the same size, regardless of being blurred or in-
focus.

In table 1, as expected, the greatest relative % difference between
the nominal focal lengths of 1500px (for fx and fy), and the returned
calibration results exists when the focus distance is 100m. The small-
est relative % difference is at 30m, although this is somewhat counter
intuitive since the in-focus (4m) case would have been expected to

Table 2: Table of calibration results using images captured from lab
setup

return the smallest difference. This difference, although small, could
be explored by adding poses and / or grid control points, and could
potentially reveal further limitations of the calibration optimizer.

4.2 Real-World Image Results

For camera calibration results based on real world images, 20 poses
were captured for each corresponding set of PCG grayscale patterns
from I1 to I3. Additionally, symmetric grids of small and large circles
were also captured and used for comparison. Since it is not possible
to accurately know the ground truth of the camera system, a mea-
sure of success is in the degree of minimizing focal length differences
between in and out-of-focus images.

Table 2 shows the calibration results using small and large circles
as well as PCG patterns. Several PCG pattern cases are compared
where different selections of ellipses were used from all of the de-
tected ellipses in order to provide calibration control points. The most
accurate case overall appears to be using the grid of small circles
where the circles have a radius of 13 pixels. The second most accu-
rate case is when using the center point correction method on PCG
circles, however, the results are close, since there is only a 0.063% dif-
ference between the differences of the two cases in and out-of-focus
focal lengths.

5 Conclusions

This work sets out to compare and validate previously devised meth-
ods for camera calibration from out-of-focus blur, and also, provides a
foundation for determining which entangled variables affect the overall
accuracy of these methods. The clearest way that this was demon-
strated, was in synthetic experiments where it was possible to decou-
ple focus distance and focal length, which effectively preserves spatial
resolution and is not possible in real life. Further work is needed to
confirm the effects of pattern array size on the sim-to-real gap. How-
ever, as expected, using synthetic data, PCG methods have been
validated to work well, and have proven to be largely invariant to out-
of-focus blur with the most observable sim-to-real difference being the
lack of real world noise. Under real world conditions, the results show
that small circles are marginally more accurate, however, the differ-
ence is small, and the dithering effect of the E-Ink display target may
have disadvantaged the PCG method relative to the circle grid. The
results provide valuable baselines for comparing these methods and
to further validate the hypothesis of E-Ink display and pattern incom-
patability. Further work can be completed to compare against syn-
thetic cases that more closely mirror the real world case, as well as to
eliminate real world issues such as dithering and noise.
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