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Abstract

The process of selecting athletes for competitive sports teams is of-
ten undermined by the limitations of traditional tournament formats,
which can misrepresent the true skill levels of participants. This issue
is exemplified by a scenario observed in a table tennis team tryout,
where a moderately skilled player advanced to the final round due to
consistently facing weaker opponents, while more adept players were
eliminated early against stronger competitors. Such occurrences cast
doubt on the fairness and effectiveness of single elimination tourna-
ments for player assessment.

Addressing these concerns, our study conducts a thorough anal-
ysis of various tournament selection strategies, including single elimi-
nation, Swiss tournaments, and novel graph and sorting-based meth-
ods. By modeling players as Gaussian distributions with established
mean skill levels, we simulate match outcomes to quantitatively eval-
uate the efficiency and accuracy of each strategy. Our evaluation em-
ploys two loss functions: Strict Loss, to gauge ranking precision, and
Binary Loss, to assess the accuracy in identifying top performers.

The experimental results reveal significant insights. Strategies in-
tegrating Elo ratings with circular graph approaches show enhanced
performance, particularly in larger player groups, while TrueSkill and
single elimination exhibit limitations in scalability and nuanced player
ranking. The Swiss tournament, although consistent, experiences
fluctuations in loss, suggesting areas for refinement. Notably, a novel
graph-based strategy emerges as a stable and efficient alternative,
underscoring its potential for future research. These findings aim to
guide the development of more equitable and precise selection pro-
cesses in sports team composition.

1 Introduction

Competitive sports demand a rigorous and meticulous approach to
selecting athletes who will represent a team or organization. Unlike
other tournament types where individuals compete solely for personal
glory, team selection carries the unique challenge of identifying the
top "x" individuals in terms of skill. This distinction underscores the
gravity of the team selection process, making it markedly distinct from
traditional tournaments.

In the context of player selection, many sports teams veer away
from traditional tournament formats due to the inherent randomness
they introduce. Instead, they rely on coaches and evaluators to sub-
jectively assess player skill levels and make selections based on their
judgment [1]. However, this approach comes with its own set of chal-
lenges. The subjectivity in evaluations can be influenced by vari-
ous biases, including personal preferences, and may not always yield
the most equitable outcomes. Moreover, the burden of selection lies
squarely on the shoulders of the evaluators, who may themselves vary
in expertise and impartiality.

The dynamics of team selection are further complicated by the
need to select not just a single champion but a cadre of top perform-
ers. However, a granular ranking of individual skills is less impor-
tant compared to a more binary outcome of accept or reject. This
dichotomy adds another layer of complexity to the selection process.

Moreover, the logistical constraints of time and resources impose
a practical ceiling on the number of matches or evaluations that can
be feasibly conducted, especially when dealing with a large pool of
candidates. It is imperative, therefore, to strike a delicate balance
between the thoroughness of the selection process and the efficient
allocation of available resources.

In response to these challenges, a body of literature has emerged,
exploring innovative strategies that aim to refine the design of tourna-

Fig. 1: An example of a single elimination tournament result, where
each number represents each player’s true skill level ranking (1 is
most skilled). While the most skilled player is able to win the tourna-
ment, the actual second most skilled player was eliminated in the first
round, and the 4th skilled player was able to move into the semifinals.

ments and the estimation of player rankings [2–6], as well as providing
in-depth analyses of existing methods [7–11]. This study will aim to
do both, scrutinizing established methods, such as single-elimination,
Swiss tournaments, as well introducing and testing innovative graph
and sorting-based selection strategies. By modeling players as Gaus-
sian distributions with known mean "skill levels," we not only quan-
tify the efficiency and accuracy of each strategy but also illuminate
their strengths and weaknesses through a comprehensive simulation-
based approach.

2 Methodology

2.1 Simulation

Our methodology revolves around a simulation-based approach to
evaluate different tournament selection strategies. To accurately as-
sess player skill levels and the fairness of each strategy, we model
participants as Gaussian distributions N(µ,σ) with mean µ and stan-
dard deviation σ . These values are randomly assigned through sam-
pling a distribution of Nµ (µµ ,σµ ) for the means and Nσ (µσ ,σσ ) for the
standard deviations.

For each match between two players, values are sampled from
their skills distribution repeatedly. A higher value between the two
players would result a single point won by that player. Following table
tennis rules, the player to first reach a total of 11 points while leading
by at least 2 points win. If 11 points is reached when the opponent
has 10 points, the game continues until a player leads by 2 points.

2.2 Evaluation

Our study aims to assess the effectiveness of each tournament se-
lection strategy in two distinct dimensions: ranking accuracy and top
performer identification. To evaluate these aspects, we employ two
distinct loss functions:

1. Strict Loss: This loss quantifies the squared difference be-
tween the predicted and actual player rankings. It assesses the accu-
racy of the strategies in correctly ordering the players.

2. Binary Loss: This loss measures the number of false positives
and false negatives in identifying top performers, treating it as a binary
classification problem ("top performer" vs. "bottom performer").



Fig. 2: Tournament selection algorithms evaluated on strict ranking loss

2.3 Selection Strategies

2.3.1 Swiss-system Tournament

The Swiss-system tournament is a traditional format designed to ac-
commodate a large number of players through a series of rounds,
pairing players with similar records. It is structured as follows:

• Players are initially paired randomly.
• In each round, players with similar records face each other.
• Players accumulate points based on wins and draws.
In the case of this simulation, the player’s ranks are based on their

accumulated scores.

2.3.2 Single Elimination

Single elimination is a classic format where players are eliminated
after a single loss, leading to a final showdown between the last two
remaining competitors. The player’s ranks are based on how far they
manage to proceed in the tournament.

2.3.3 Merge Sort

our modified merge sort ranking method optimizes comparisons
among players by assuming transitivity, meaning that if A > B > C,
it follows that A > C as well. Players are assigned to groups, which
are then continuously merged with adjacent branches by comparing
the members of each group in order. The time complexity for a full
ranking of n players is approximately n⌈log(n)⌉.

2.3.4 Circular Graph

The Circular Graph strategy is designed for situations with very limited
time. Each player is only compared to their 2 adjacent players. After
each player plays exactly 2 games, we are able to construct a circular
graph. Through propagating the performance of each player through
their connected edges, we estimate their performance relative to the
entire group.

2.3.5 Graph Resistance Distance

The Graph Resistance Distance strategy employs resistance distance
calculations within a graph to identify opponents which are further
away [12]. For example, if A has played B, and B played C, and C
played D, then D would have a higher resistance distance calculation,
assuming no other edges. Unlike a Swiss tournament, this selection
algorithm does not consider potential relative skill or performance.

2.4 Ranking Strategies

Some of the above mentioned selection strategies can be further
complemented by ranking or skill estimation algorithms. The Circu-
lar graph strategy, for example, simply uses the win/loss rate between
two players to estimate their relative skill, but this calculation can be
replaced by other popular rating systems like the ones mentioned be-
low. Similarly, they can also be used in Swiss tournaments to estimate
good pairings, or for the Graph Resistance strategy to estimate the fi-
nal ranking.

2.4.1 ELO

The ELO rating system [13] is a widely used method for ranking play-
ers. It calculates the expected outcome of a match based on the dif-
ference in players’ ratings and updates the ratings after each match.
The formula for calculating expected outcome is:

EA =
1

1+10(RB−RA)/400
(1)

where EA is the expected outcome for player A, RA and RB are the
ratings of players A and B, respectively. The actual outcome SA (1 for
a win, 0 for a loss, and 0.5 for a draw) is used to update the ratings:

R′
A = RA +K(SA −EA) (2)

where R′
A is the new rating for player A, K is a constant, and SA is

the actual outcome.

2.4.2 TrueSkill

In the TrueSkill algorithm [14, 15], player ratings are represented as
Gaussian distributions rather than a scalar, with each player having
both a mean skill level (µ) and an uncertainty (σ ) associated with their
rating. Draw probability is then calculated as a "quality estimate". This
rank estimate can again be used in both a Swiss style tournament as
well as the Circular Graph strategy.

By combining these selection and ranking strategies, our study
aims to provide comprehensive insights into the most effective meth-
ods for accurately identifying top-performing athletes in the context
of team selection, while considering the constraints of time and re-
sources.



Fig. 3: Tournament selection algorithms evaluated on binary selection loss

3 Experimental Results

In this section, we present the outcomes of our extensive simulations,
where we assessed the performance of various tournament selection
strategies in terms of strict and binary losses, aiming to evaluate their
efficiency and accuracy in selecting top-performing athletes.

3.1 Strict and Binary Loss Convergence Analysis:

To monitor the efficiency of each tournament selection strategy, we
tracked the evolution of both strict and binary losses after each simu-
lated match. These plots, which illustrate the strategies’ convergence
towards accurate player rankings and the identification of top perform-
ers, provide valuable insights into their respective strengths and weak-
nesses.

3.2 Performance Observations:

Our experiments yielded several notable observations:
1. TrueSkill’s limited Performance: TrueSkill shows decent

performance for evaluating the true rank of the entire player
population. However, it exhibited suboptimal performance
when specifically identifying the top performers, suggesting
potential limitations in this regard.

2. Single Elimination’s Efficiency and Limitations: Single
elimination demonstrated exceptional efficiency when quickly
identifying top performers in a large pool of players. However,
its early stopping condition curtails its potential for further con-
vergence to establish more refined rankings. Additionally, its
efficiency is less notable in smaller group settings.

3. Merge Sort and Circular Graph Strategy Dynamics: In con-
trast to single elimination, the merge sort and the base circular
graph strategy displayed decent competency in smaller player
groups but faced significant challenges when scaling to larger
ones, ultimately faltering in this context.

4. Circular Graph Strategies with Elo or TrueSkill Integra-
tion: Substituting the base win rate estimation calculation in
the circular graph strategies with Elo or TrueSkill proved to
be a transformative enhancement. This modification enabled
these strategies to sustain competitive performance even in
larger player groups. This underscores the potential of inte-
grating well-established rating systems to alleviate scalability
concerns encountered by other strategies.

5. Swiss Tournament’s Consistency: The Swiss tournament,
when employing its base ranking strategy as well as Elo

for skill estimation, consistently demonstrated top-tier perfor-
mance in both strict and binary losses. However, it exhibited
cyclic fluctuations in loss over time, which may require further
investigation.

6. Resistance Distance Strategy’s Efficiency and Stability:
While not eclipsing Swiss tournaments in overall performance,
the resistance distance strategy proved dependable in terms
of loss reduction rate. Importantly, it sidestepped the cyclic
loss fluctuations observed in Swiss and SwissElo. This sug-
gests that such graph-based selection approaches may be an
interesting point for further research.

4 Conclusion

The quest for a fair and objective method of selecting top athletes
for team sports is fraught with challenges, from the unpredictability
of tournament outcomes to the subjective biases of human judgment.
Our simulation-based study has critically evaluated various tourna-
ment selection strategies, revealing a complex landscape where no
single method is without its drawbacks. TrueSkill and single elimina-
tion, while efficient in certain contexts, fall short in consistently iden-
tifying the true top performers, particularly in larger pools of athletes.
On the other hand, strategies that incorporate Elo ratings into circu-
lar graph approaches show remarkable adaptability and robustness,
suggesting that the integration of established rating systems can sig-
nificantly enhance selection processes. The Swiss tournament, with
its consistent performance, remains a reliable method, though its pe-
riodic fluctuations in ranking accuracy point to areas for potential re-
finement. Notably, the resistance distance strategy stands out for its
stability and consistent loss reduction, marking it as a promising di-
rection for future research. Ultimately, this study contributes to the
ongoing dialogue on athlete selection, advocating for a more data-
driven, analytical approach that can serve to improve the fairness and
objectivity of team composition in sports.
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