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Abstract

A contemporary trend in the field of simultaneous localization and
mapping (SLAM) is the application of sensor fusion to improve per-
formance. There are many sources of additional data, including but
not limited to inertial measurement units (IMU), event cameras, and
depth data. This paper introduces a visual monocular SLAM system
that tightly combines visual photogrammetric data, visually extracted
geometric information, and inertial data. Our work improves on the
energy function developed by H-SLAM [1], designed for joint optimiza-
tion of photometric and geometric residuals in tracking, by allowing
it to also handle inertial residuals. Furthermore, our SLAM system
shares H-SLAM’s [1] loop-closure mechanisms that are tightly cou-
pled with the tracking process to ensure global consistency across
large-scale maps. When tested on benchmarks, our system performs
well compared to past SLAM systems that use photogrammetric, ge-
ometric, and inertial data and is competitive compared to state-of-the-
art SLAM systems.

1 INTRODUCTION

In situations where a mobile robot finds itself navigating within an un-
familiar environment, simultaneous localization and mapping (SLAM)
is required. Because the environment is unknown, constructing a de-
tailed map of the surrounding terrain is necessary to determine a pre-
cise location. Using a map for navigation, as enabled by SLAM, is
more effective than map-less methods like odometry because it can
correct accumulated drift errors. Additionally, the generated map has
practical uses beyond navigation.

A specific variant of the SLAM problem is monocular visual SLAM.
In visual SLAM, only 2D pixel data from a single camera is used.
However, before mapping and localization can be done, visual sen-
sor data has to be converted to a representation that is well-suited for
navigation. This conversion process follows two distinct approaches:
feature-based (indirect) and photogrammetric (direct). Feature-based
methods transform images into a collection of distinctive and readily
trackable 3D key points. In contrast, photogrammetric methods moni-
tor pixel movements and aim to calculate the positional changes that
are reflected by the movements.

Indirect and direct approaches work well together because they
cover each other’s limitations. Direct methods leverage a more exten-
sive portion of the available pixel data in comparison to indirect meth-
ods, enabling them to function effectively in areas with lower textures.
However, direct methods are much more susceptible to variations in
lighting compared to indirect methods. Additionally, it is difficult to
perform long-term loop closure with direct methods because direct
pixel information is only relevant for a short time span. When used in
tandem, the complementary strengths of the two methods can com-
pensate for each other’s limitations. This work builds upon the founda-
tions laid by H-SLAM [1], which combines indirect and direct methods
to become a hybrid SLAM system. We further add sensor information
from an inertial measurement unit (IMU) to enhance performance.

IMUs are sensors that measure acceleration and angular rotation.
When added to a SLAM system, IMUs allow visual SLAM systems
to operate without visual input, calculate scale, and improve overall
performance by providing additional data. Given the occasional loss
of visual data in real-life robot operations, the inclusion of an IMU sig-
nificantly improves robustness. This paper’s novel contribution is the
integration of an IMU into the hybrid direct-indirect SLAM framework of
H-SLAM [1] through a novel energy function that fuses direct, indirect,
and inertial residuals. H-SLAM [1] uses a unique descriptor-sharing
approach to fuse the direct and indirect representations, which allows
it to outperform contemporary hybrid SLAM systems. The proposed
system stands out as one of the few SLAM systems that combines

Fig. 1: The proposed system in operation on the EUROC MAV MH04
sequence. The coloured points are indirect key points and the gray
points are the dense point cloud from the direct features.

direct, indirect, and inertial data, achieving performance levels com-
parable the current state-of-the-art.

2 RELATED WORK AND BACKGROUND

This section serves a twofold purpose. Firstly, it offers context by pro-
viding an overview of direct and indirect SLAM methods whose ideas
have contributed to the proposed system. Secondly, it compares the
proposed system with existing hybrid inertial SLAM methods.

One of the first direct odometry approaches was Dense Tracking
and Mapping (DTAM) [2]. Its use of direct features enhanced the ro-
bustness of the algorithm and facilitated a more comprehensive 3D re-
construction. Semi-direct Visual Odometry (SVO) [3] and Large Scale
Direct SLAM (LSD-SLAM) [2] built upon DTAM’s [2] work. SVO [3]
used direct motion calculation methods on extracted key points, mak-
ing it one of the first hybrid direct-indirect SLAM systems. LSD-SLAM
[2] introduced the novel approach of using high-gradient regions in-
stead of all available pixels for direct SLAM. Additionally, it incorpo-
rated loop closure by passing the data to OPENFABMAP [4], an inde-
pendent appearance-based SLAM system. Direct Sparse Odometry
(DSO) [5] further improved LSD-SLAM’s [2] work by improving upon
the pixel sampling method used. DSO would be further expanded
to have loop closure as presented in the paper DSO with Loop Clo-
sure (LDSO) [6] and state-of-the-art inertial integration in Delayed-
Marginalization Visual Inertial Odometry (DM-VIO) [7]. It’s important
to note that the principles introduced by DSO form the basis for the
direct SLAM aspects of the proposed system.

The most important indirect SLAM system is ORBSLAM [8] [9].
One of its significant innovations is the usage of the same key point
features for tracking, mapping, and loop closure, resulting in a tight
integration of these components. In contrast, a common drawback in
many direct SLAM formulations is the loose coupling between their
local and global maps, as they do not employ the same features for
both tracking and global loop closure. For example, LSD-SLAM [2]
uses an entirely separate appearance-only SLAM system for its loop
closure. Similarly, LDSO [6] extracts ORB features, which are not
used for tracking, to encode a bag-of-visual-words [10] for loop clo-
sure. H-SLAM [1], which this work builds upon, attempts to solve this
issue by using descriptor sharing, which associates patches of pix-
els to key points. Both pixel patches and key points are optimized
for short-term tracking, while the ORB descriptor attached to the key
points can be used for loop closure. Consequently, H-SLAM [10] uses



its features for both tracking and global loop closure, resulting in a
tightly integrated system.

By adopting the H-SLAM [10] framework for the fusion of direct
and indirect points, the proposed system achieves a competitive edge
when compared to other direct-indirect hybrid inertial SLAM systems.
One example is SVO-Pro [11], a system that builds upon the foun-
dations of SVO [3] by adding inertial information and introducing
a SLAM module using through iSAM2 [12], an independent graph-
based SLAM system. SD-VIS [13] is another comparable example.
Similarly to SVO [3], SD-VIS [13] does tracking using inertial and di-
rect visual information on non-keypoint frames and extracts descrip-
tor features for keyframes, resulting in a loosely coupled approach.
In contrast, the proposed method tightly integrates the loop closure
process, setting it apart from other systems.

3 METHOD

3.1 Integration of the IMU into Tracking

The proposed system’s architecture is fairly standard for visual SLAM
and based on the framework developed by H-SLAM [10]. The novel
improvement is the application of a new energy function that jointly
optimizes photometric, geometric, and inertial residuals. The system
performs a multi-objective optimization to minimize said energy func-
tion:
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Where Ep(ξ ) being the photometric residuals, Eg(ξ ) being the geo-
metric residuals, and Eimu(ξ ) being the inertial residuals. To balance
the influence between the photometric and geometric residuals, each
energy is divided by n, the count of each feature type, and σ2, the
residual variance. There is an additional K factor to reduce the in-
fluence of geometric residuals in low texture or blurry environments
defined as:

K =
5exp(−2l)

1+ exp( 30−Ng
4 )

(2)

Where l is the pyramid level and Ng is the number of inlier geometric
matches.

The photometric residuals are calculated using the same method
as DSO [5], and the geometric residuals are the difference between
the predicted and perceived key-point positions. To solve the energy
minimization problem, the Gauss-Newton method first proposed by
Leutenegger et al. [14] and then applied to direct Systems by DSO [5]
is used. The optimization algorithm is a sliding window Gauss-Newton
approach that uses First Estimate Jacobians [15].

Because the inertial data arrives at a faster rate than the visual
data, the IMU sensor inputs are first pre-integrated using a well-known
method [16] for synchronization. The energy is then calculated using
a method first proposed by Visual Inertial DSO [17]:

Eimu(si,s j) := (s j ⊟ ŝ j)
T

Σ̂
−1
s, j (s j ⊟ ŝ j) (3)

Where si and s j are the two states, ŝ is a predicted state, and Σ̂ is the
associated covariance matrix. The operator ⊟ is an increment in the
opposing direction when dealing with poses and normal subtraction
for other components.

Furthermore, to deal with situations where there is bad image
data, the W (evisual) term is added to lower the influence of the visual
direct and indirect residuals.
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W (evisual) = λ

{
θ

evisual
, if evisual ≥ θ

1, otherwise
(5)

Since the inertial data is now available, the gravity and scale vari-
ables are optimized as explicit variables. To handle the marginaliza-
tion of terms with IMU factors, we use the delayed marginalization

method proposed by DM-VIO [7]. Finally, the IMU initialization is done
using the same method as DM-VIO [7], which leverages the delayed
marginalization method to improve performance and robustness.

3.2 Integration of the IMU into Loop Closure

Because IMU measurements are based on odometry, they do not pro-
vide any information for the loop closure module. However, the IMU
data is modified by the loop closure once a loop is detected. This
is achieved by rotating the IMU data by the corrected pose rotation.
The loop closure module is based on the framework presented by H-
SLAM [10]. The loop closure is done using hybrid graphs that use both
the co-visibility information from the indirect key points and pose-pose
constraints provided by the temporally connected frames. In order to
not break the optimization, the frames in the moving optimization win-
dow are frozen from the loop closure process.

4 RESULTS AND DISCUSSION

To test the performance of the proposed system, the system was
tested on all the sequences of the commonly used EUROC MAV
[18] dataset. This dataset is comprised of eleven visual-inertial se-
quences from captured drone footage within various indoor environ-
ments. Given the dataset’s challenging attributes, including rapid
drone motion and adverse lighting conditions in certain sequences, it
serves as an effective test for a system’s robustness. Because SLAM
systems are not deterministic in their tracking point selection, the re-
sults are averaged over eight runs. The system is compared to both
similar and state-of-the-art methods such as ORBSLAM3 [19]. The
results are listed in table 1.

Set Ours HSLAM LDSO SD-VIS DM-VIO ORB3

MH01 0.076 0.035 0.053 0.261 0.065 0.062

MH02 0.04 0.034 0.062 0.290 0.044 0.037

MH03 0.101 0.140 0.114 0.577 0.097 0.046

MH04 0.119 0.334 0.152 0.497 0.102 0.075

MH05 0.107 0.141 0.085 0.512 0.096 0.057

V101 0.062 0.136 0.099 0.245 0.048 0.049

V102 0.068 0.193 0.087 0.502 0.045 0.015

V103 0.07 0.823 0.536 0.389 0.069 0.037

V201 0.032 0.051 0.066 0.202 0.029 0.042

V202 0.056 0.077 0.078 0.455 0.05 0.021

V203 0.115 1.257 X 0.445 0.03 0.027

Avg 0.077 0.3 0.13* 0.400 0.069 0.043

Table 1: Results on the EUROC MAV dataset. Error is in root mean
squared average trajectory error in meters. Please note the bench-
marked systems have different sensors suites and features. HSLAM
and LDSO are monocular SLAM systems. DM-VIO is a monocular
inertial visual odometry system with no loop closure. ORBSLAM3
(shown as ORB3 in the table), SD-VIS, and the proposed system are
operated as monocular inertial SLAM systems. An average with a *
means at least one of the sequences did not finish. All results except
the proposed system use values reported by the authors of each sys-
tem

Analyzing the results, it becomes clear that the proposed system
consistently outperforms H-SLAM [10], upon which it is built, as well
as older hybrid inertial SLAM systems such as SD-VIS [13]. Notably,
The proposed system outperformed HSLAM [10] across the MH04,
MH05, V103, and V203 datasets, which have more challenging mo-
tions and lighting conditions. This shows that adding an IMU signifi-
cantly improved robustness. The proposed system also remains com-
petitive when compared to state-of-the-art systems like ORBSLAM3
[19] and DM-VIO [7]. However, it’s worth noting that the incorpora-
tion of loop closure does not yield a substantial improvement in the



Fig. 2: Chart of the proposed system’s performance in the EUROC
MAV dataset. Eight runs were done for each of the sequences and
then averaged.

proposed system when compared to DM-VIO [7]. This outcome may
be attributed to the characteristics of the EUROC MAV dataset [18]
because it lacks sequences with large loops, which are where loop
closure mechanisms exhibit significant advantages. To further vali-
date the effectiveness of the loop closure, additional testing should
be done with datasets featuring large loops. Another reason may
be the need for fine-tuning the loop closure process for the delayed
marginalization system used. The delayed marginalization process
was not extensively considered during the development of the system
and should be a focus of future research.

4.1 Hardware and Implementation

The experiments were conducted on a desktop computer with an Intel
Core i7-8700K CPU and NVIDIA 1080 TI. It’s important to note that the
GPU was not used. The execution involves three concurrent threads:
tracking, mapping, and loop closure. The tracking thread processes
each image as they are sequentially inputted. In comparison, map-
ping operations are done during keyframe insertions and loop closure
is exclusively executed on loop detections. It was found that the run-
time of the system was dependent on the size of the map, slowing as
the map size increased. However, the proposed system consistently
maintained real-time operation speeds during tests using the EUROC
MAV [18] dataset.

5 CONCLUSIONS

In conclusion, this paper develops a SLAM system that utilizes a
broader array of data sources, including visual photogrammetric data,
visually derived geometric information, and inertial measurements.
The system uniquely combines tracking that uses indirect key points,
direct pixel patches, and inertial measurements with a tightly coupled
loop closure system. The combination of systems allows for favorable
performance when compared to similar prior SLAM systems and com-
petitiveness compared to state-of-the-art SLAM systems. This paper
underscores the potential of utilizing a diverse set of data sources in
SLAM to improve the overall robustness and performance of the sys-
tem.
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