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Abstract

Medical image registration is an important but often challenging as-
pect for clinical image analysis. It has applications in treatment plan-
ning requiring image fusion, or inter-subject atlas based analyses, as
well as longitudinal analyses. Spine registration presents extra chal-
lenges because of the variability in the field of view (FoV) of the spinal
column between different image series and many vertebrae having a
similar appearance leading to many local registration minima. To help
improve spine registration robustness, we generate a labelled dataset
of cervical spine magnetic resonance imaging (MRI) and successfully
apply a Mask R-CNN model to localize and label vertebra. An auto-
mated method to generate labelled bounding boxes and masks can
then be used to seed initial alignment or crop to appropriate FoV for
subsequent affine and deformable spine MRI registration.

1 Introduction

Medical imaging is vital for many clinical workflows such as diagnosis,
pre-operative planning, and post-operative evaluation. Magnetic reso-
nance imaging (MRI) has revolutionized medical imaging and is used
in virtually all medical sub-specialties [1]. This is due to its excellent
soft tissue contrast and anatomic detail, in addition to the benefit of
not utilizing ionizing radiation. Spine MRI is commonly used for the
detection of pathologies such as infections, metastases, nerve root
disorders, and disc abnormalities [2].

Image processing methods, such as image segmentation and de-
formable registration, are commonly used to properly identify and
spatially align areas of interest for better pathological understanding
[3]. To enhance clinical decision-making, MRI images taken with dif-
ferent weightings, such as anatomical (T1w and T2w) and diffusion
weighted (DW) images, are often registered to align the features of
interest. However, registration of spine MRI is notoriously difficult of-
ten requiring time consuming manual landmarking; improvements to
clinical tools are needed.

To improve spine MRI registration, it is beneficial to guide reg-
istration algorithms to spatially align the same vertebrae and avoid
mismatched vertebrae with poor spatial alignment. However, due to
changes in patient position and scanning parameters, resultant image
volumes can have different fields of view (FoVs) with varying vertebral
levels and number of vertebrae, leading to the requirement of manual
or semi-automated image registration.

To assist this process, the objective of this study was to evaluate
the use of a Mask R-CNN model to identify and label specific verte-
brae in MRI for use in a spine imaging analysis pipeline. This compo-
nent will allow for the automated detection of individual vertebra within
multi-modal images, which can then be used to seed initial alignment
or crop to appropriate FoV for subsequent affine and deformable reg-
istration of spine MRI images.

1.1 Background

Mask R-CNN is a state-of-the-art object detection and instance seg-
mentation model that builds upon the Faster R-CNN model [4]. The
model consists of a region proposal network (RPN) that utilizes a
backbone network (usually ResNet). The RPN proposes regions of
interest (ROIs) in the image where bounding boxes, classification la-
bels, and segmentation masks of detected objects are generated by
three separate heads. This includes a softmax classifier, bounding
box regressor, and binary classifier head.

During training, the model utilizes a multi-task loss, L, on each
sampled ROI by summing the following: Lclassi f er, Lbox, and Lmask.
Lclassi f er is a categorical cross-entropy loss responsible for supervis-
ing the classification task of labelling the bounding boxes proposed in
the ROI [5]. Lbox is a regression loss of the bounding box coordinates
utilizing a smooth L1 loss [5]. Lastly, Lmask is an average binary cross-
entropy loss responsible for the binary mask generated by the model
[4].

2 Dataset

This study utilized the Spine Generic dataset, which consists of T1w,
T2w, and DW images from 267 healthy subjects imaged from 42+
centers around the world [6]. The dataset consists of images taken
with the spine generic protocol, a quantitative MRI protocol, to ensure
consistent imaging for spinal cord research. This includes a consis-
tent voxel size of 1mm3 with images being 192x260x320 voxels. All
images included the entire skull and cervical spine, ended at varying
points within the thoracic spine. Figure 1 a) depicts an example sub-
ject MRI from the dataset. For the purposes of this study, only the
T1w, 2D mid-sagittal slices of the MRI images were utilized.

3 Methodology

The pipeline for vertebrae detection and labelling utilized a Mask R-
CNN model to predict each vertebra within the MRI with a bounding
box, vertebra class label, and segmentation mask.

3.1 Data Pre-processing

Data pre-processing was required to generate labelled data for the
supervised training of the Mask R-CNN model. This included gener-
ating class labels, segmentations, and bounding boxes of the verte-
brae within the MRI. Of note, the Spine Generic MRI dataset includes
the brain and skull, which were not of interest to this investigation and
were excluded from the analysis using a crop to a cervical spine only
region of interest. Figure 1 shows the data pre-processing pipeline in
full detail.

3.1.1 Spinal Cord Toolbox

The Spinal Cord Toolbox (SCT) was utilized as a method to gather
ground truth annotations of the Spine Generic dataset in a semi-
automated way. SCT is an open source package that was developed
for the analysis and processing of spinal cord MRI by establishing
standardized templates and analysis procedures [7]. While SCT was
developed for spinal cord analysis, it also provides robust tools for
spinal vertebrae processing, including spinal cord segmentation and
labelling of vertebral levels.

Generation of the spinal cord segmentation and labels of vertebral
levels was first performed using SCT’s Deepseg algorithm (Figure 1
b)), which utilizes a 2D U-Net convolutional neural network [8]. SCT
was then used to register the PAM50 template, an unbiased multi-
modal MRI template including the entire spinal column, to the image
as seen in Figure 1 c) [9]. This created baseline spine segmentations
of the vertebrae. Post SCT processing, the images included segmen-
tations of the spinal cord, labels of vertebral levels on the spinal cord,
and warped spine segmentations from the PAM50 template.



Fig. 1: Data pre-processing pipeline to obtain ground truth annotations from the Spine Generic Dataset. a) The original Spine Generic T1w
MRI images of healthy subjects. b) Initial segmentation and labelling of the spinal cord using SCT. The differing coloured segments along the
spinal cord correspond to the labelled vertebral levels. This image is labelled from C1-T3. c) Registration of PAM50 template spinal column
onto the MRI image using SCT. d) Splitting the PAM50 spinal column into individual vertebrae and relabelling using the spinal cord vertebral
level labels in 3DSlicer. e) Cropping to the cervical spine (C1-C7) after quality checks. f) Manual segmentation clean-up and removal of any
first thoracic vertebra segmentation if visible.

3.1.2 3D Slicer

3D Slicer is an open source platform for medical image computing
[10]. 3D Slicer was used to generate individual vertebral segmenta-
tions from the warped PAM50 spinal column segmentation by splitting
it into individual islands (or vertebra). Labels of the vertebra were then
generated according to the nearest label from the adjacent spinal cord
segmentations from SCT’s Deepseg as seen in Figure 1 d). Lastly, a
quality check of the images was performed to inspect for labelling and
segmentation errors and images were cropped to the cervical spine
(C1-C7) as seen in Figure 1 e). Of the original 267 images in the Spine
Generic Dataset, only 149 were utilized due to substantial segmenta-
tion and/or labelling errors. Minor additional manual segmentations
were performed to clean up the selected segmentations to ensure ro-
bust ground truth segmentation masks and bounding boxes. These
segmentation corrections were primarily due to inaccurate posterior
element segmentations from the PAM50 warping as seen in Figure
1 f). Removal of the first thoracic vertebra was also performed if in-
cluded with the cropped cervical spine.

3.2 Mask R-CNN-Based Vertebrae Detection and La-
belling

A Mask R-CNN model was evaluated for the detection of cervical
spine vertebrae. The PyTorch torchvision implementation of the Mask
R-CNN with a ResNet50-FPN backbone (pre-trained on the COCO
2017 dataset) was used to identify eight classes (C1 to C7 and back-
ground). The model utilized a ADAMs optimizer with a learning rate
of 1e−4, had a batch size of 5, and a confidence threshold of 0.5.
The model was trained on a single NVIDIA Titan V GPU with 12GB of
VRAM for 100 epochs.

Data augmentations were performed on the input mid-sagittal
slice data for training. This includes a random gaussian blur with a
kernel size of 3 and σ between 0.1 and 1, random horizontal flip,
random rescaling of the image between 128 and 192 voxels while
maintaining the aspect ratio, random rotation ±45◦, and padding to
a 256x256 voxel input size. The data was randomly split by subject
for training, validation, and testing 70%:20%:10%, which equated to
106:29:14 subjects.

4 Results

The model was evaluated on the 14 test subjects unseen by the model
during training and validation.The model was successful in predicting
the bounding box, class label, score, and mask of the vertebra in the
bounding box as shown in Figure 2. Five metrics (Table 1) were uti-
lized to evaluate the model:

1. The multi-task Mask R-CNN loss, which was used for training.
(0 best performance)

Fig. 2: Example of inference on test set. a) The input cervical spine
image for evaluation of the model. b) Ground truth labels, masks, and
bounding boxes. c) Predicted labels, masks, and bounding boxes.
This test example successfully predicts the bounding box, label, and
mask of each vertebra, but also has a false positive detection of C3
on C4 due to vertebrae shape similarities.

2. Mean average precision with a 75% intersection over union
(IoU) threshold (mAP@75), a common object detection metric
used in state-of-the-art models [4, 5] that considers precision,
recall, and IoU with the ground truth bounding boxes. (1 best
performance)

3. Localization error (LE) [pixels], the mean absolute error of the
predicted and ground truth bounding box centroids. (0 best
performance)

4. Mask dice loss, a common segmentation metric. (0 best per-
formance)

5. Identification rate (IDR), a measure of the classification perfor-
mance of individual vertebra by the model. It is a percentage
of vertebrae correctly detected and labelled compared to the
total vertebrae in the image. (1 best performance)

Table 1: Model evaluation metric results demonstrate effectiveness of
Mask R-CNN for spine vertebrae localization and labelling. Lower is
better for all evaluation metrics except mAP@75 and IDR.

Metric Value
Multi-Task Loss (↓) 0.697
mAP@75 (↑) 0.676
LE [pixels] (↓) 1.573
Dice Loss (↓) 0.111
IDR (↑) 1.0

Figure 2 b) shows the predicted bounding boxes, labels and seg-
mentation masks during testing. The model was capable of identi-
fying and localizing vertebrae within the image demonstrated by the
mAP@75 of 0.676. Table 2 shows the AP for each vertebra from the
model evaluation. As expected, the C2 and C7 vertebrae were found



Table 2: Average precision of individual vertebral levels used to calcu-
late mAP@75.

C1 C2 C3 C7 C5 C6 C7
AP 0.446 0.677 0.630 0.654 0.566 0.467 0.669

to have the highest AP of 0.677 and 0.669, respectively, due to the dis-
tinct vertebrae features, compared to the other vertebrae which have
similar shapes. Specifically, C2 has a elongated vertebral body and
rounder posterior element in the mid-sagittal slice, whereas C7 has
a similar vertebral body to C3-C6, but the posterior element is elon-
gated. The model’s ability to predict C1 and C6 vertebra were lower,
with an AP of 0.446 and 0.467, respectively. The poorer performance
to detect the C1 vertebra was due to its small size with respect to the
other vertebra and difficulty to distinguish within the resolution of the
MRI images. The lower AP of C6 may be attributed to the posterior
element also being longer than C3-C5, but shorter than C7, leading
to an increase in false positive detections as C7. In the example out-
put prediction in Figure 2, the model predicted a false positive C3 on
C4. This is due to the close similarities in vertebrae shape or the
score threshold used for evaluation. The LE of 1.573 demonstrated
good accuracy measuring the voxel-wise error in the centroid loca-
tions of the bounding boxes in the image. The segmentation masks
were found to be accurate when visually inspected, with a dice loss of
0.111. The largest deviations were visually found to be at the posterior
elements, which is due to their complex shapes and sizes depending
on the subject anatomy and mid-sagittal slice taken. Lastly, IDR was
found to be 1.0, meaning all vertebrae in the input test images were
properly detected and labelled by the model.

5 Conclusion and Future Work

This study demonstrates that a Mask R-CNN object detection model is
capable of accurately localizing and labelling individual vertebra within
the cervical spine in MRI images. The model output bounding boxes
and masks can then be used for FoV cropping of images towards im-
proving initial affine alignment prior to deformable registration. Future
work will focus on improving model accuracy, expanding its detection
capabilities to other regions of the spine, making the model insensitive
to the MRI weighting, and generalizing to other novel MRI datasets,
including those with pathology. This includes increasing the dataset
to include other sections of the spinal column, training with variable
fields of view such as C3-C6, the addition of T2w images, and an in-
vestigation of a graph or probabilistic models that take advantage of
the order of the spine vertebrae to increase labelling performance.
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