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Abstract

In this paper, we introduce a fast and precise surface normal esti-
mation technique designed explicitly for depth maps, also known as
organized point clouds. Our approach formulates the surface normal
estimation as a closed-form expression, effectively mitigating the im-
pact of measurement noise through multi-directional averaging. We
then streamline the multi-directional normal estimation process for
efficiency. Additionally, we propose a straightforward yet powerful
method to eliminate inaccurate normal estimations at depth discon-
tinuities, making our approach object boundary-aware. Comparative
analyses with established surface normal estimation algorithms re-
veal that our method not only excels in accuracy but also exhibits the
speed required for real-time applications.

1 Introduction

Surface normal vector estimation is a fundamental process in various
3D vision and 3D processing tasks, such as 3D surface reconstruc-
tion [1], scene segmentation [2], object recognition [3], and more [4–
6]. It plays a crucial role in ensuring the accuracy of the complete
3D processing pipeline. As such, achieving fast and precise normal
estimations is of paramount importance for practical applications.

Several approaches exist for normal estimation in the literature,
which vary depending on the type of input 3D data. For unorganized
point clouds, a common approach involves plane-PCA [7], where a
plane is fitted to neighboring points, and the smallest eigenvalue is
used to determine the surface normal vector. Although this method
is accurate, its high computational complexity limits its suitability for
large-scale point clouds. Consequently, various other techniques
have been developed to improve accuracy and computational effi-
ciency.

In some research, robust statistics and randomized Hough Trans-
form are utilized to enhance normal estimation accuracy [8, 9], while
others explore GPU-based implementations to accelerate the pro-
cess [10]. Techniques like Deterministic MM-estimator (DetMM) are
employed to reduce outliers [11]. Recently, deep learning-based
methods [12–14] have gained attention, but they often require richly
labeled datasets [4, 15]. In contrast to unorganized point clouds,
surface normal estimation directly from depth maps (organized point
clouds) has been less explored. However, this approach offers advan-
tages such as eliminating the need to determine neighborhood points
and allowing for efficient 2D image processing operators, which are
notably faster than their 3D counterparts.

To address the challenge of estimating surface normals from
depth maps, various methods have been proposed in the litera-
ture [16–19]. Some prior work encountered issues related to tangent
vector selection and empirical parameter tuning, which led to inaccu-
racies, particularly for small, highly curved objects. However, other
methods have achieved both accuracy and speed by employing GPU
acceleration. Despite these advancements, challenges remained in
estimating normal vectors for uniform areas.

In our previous work [20], a fast and accurate surface normal es-
timation method is proposed. In that work, a closed-form expression
is proposed for each component of the surface normal vectors. Also,
the method is capable of multi-scale implementation which, in turn,
decreases the effect of the measurement noise. However, using a
multi-scale approach increases the execution time of the algorithm.
To address this issue, a fast and accurate surface normal estimation
method is presented in this paper. The contributions of this work are
as follows:

1. The averaging process in the multi-scale approach is used in a

multi-direction manner to suppress the effect of measurement
noise.

2. The multi-direction method is implemented in an efficient man-
ner.

3. The erroneous estimated normal vectors are excluded from
the final normal map using a simple yet effective method.

The rest of this paper is organized as follows: In Section 2, our
previous work is reviewed briefly as motivation for the current work.
In Section 3, the proposed method is explained in detail. Section 4 is
dedicated to experiments and results. Finally, the paper is concluded
in Section 5.

2 motivation and Background

In our prior work [20], we introduced a fast method for direct surface
normal vector estimation from depth maps. In this approach, we begin
by constructing the projection of two surface tangent vectors within the
depth map, as illustrated in Figure 1a. The surface normal vector at
the query point is subsequently determined as the cross product of
these two tangent vectors. The closed-form solution for these normal
vectors is derived as follows:
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. ox and oy are the coordinates of the optical center.
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(a) 2D projection of surface
tangent vectors on the depth
map [20].
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(b) Projection of surface tan-
gent vectors construction in
all four main directions.
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(c) Projection of final surface
tangent vectors.

Fig. 1: Construction of surface tangent vectors.



In case of noisy input, the averaging process on multi-scale results
will reduce the effect of noise. Therefore (for i = 1,2, · · · ,k):
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While the single-scale version of this method is both fast and ca-
pable of accurately estimating normal vectors for smooth surfaces,
the multi-scale normal estimation suffers from reduced speed, slow-
ing down by a factor equal to the number of scales. Additionally, it
fails to account for the impact of depth discontinuities at object bound-
aries. In the forthcoming section, we tackle both of these limitations
observed in our previous work. We introduce an advanced surface
normal vector estimation method that is not only fast and precise but
also takes into consideration object boundaries, making it a compre-
hensive solution for accurate 3D surface analysis.

3 Methodology

3.1 Fast normal estimation

In our previous work [20], we employed a multi-scale approach to mit-
igate the influence of measurement noise on the final estimated sur-
face normal vectors. The application of an averaging operation across
different scales effectively diminishes the noise’s impact. However,
utilizing k scales for the final normal vector computation results in a
time overhead, scaling linearly with k. To leverage the benefits of the
averaging operation for noise reduction, we adopt a strategy involv-
ing multiple pairs of distinct tangent vectors to estimate the surface
normal at a given query point. Subsequently, the ultimate normal vec-
tor for each point is derived by averaging the resulting normal vectors.
Figure 1b illustrates the projection of four diverse surface tangent vec-
tors on depth maps. It’s worth noting that, in this context, only pairs
of perpendicular tangent vectors are considered. The average of all
resulting normal vectors serves as the final normal vector for each
query point. This averaging process bestows robustness upon the
estimation, rendering it resilient to measurement noise.

Considering all four tangent vector pairs, the normal vector can be
estimated as:
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where, s24 and s35 are two tangent vectors which are depicted in Fig-
ure 1c. Equation 3 proves that the result of the summation of four
different cross products can be achieved using a single cross product.
This means that using this approach can accelerate the normal esti-
mation process by a factor of 4. Finally, the closed-form solution for
the normal vectors can be determined as:
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3.2 Considering object boundaries

The proposed method, along with our prior work [20], demonstrates
proficiency when addressing points associated with smooth surfaces
that lack depth discontinuities. However, challenges emerge at object
boundaries, where at least one of the surface tangent vectors may be-
come invalid. As a result, the orientation of the estimated normal vec-
tor can deviate from the actual direction. To confront this issue, a novel
approach is introduced herein. Surface normals are unit vectors, with
their orientations representing the crucial parameters in 3D process-
ing. Consequently, when converting a normal vector from Cartesian
coordinates into spherical coordinates, only the θ component is taken
into account. However, it’s important to note that the length of the es-
timated normal vector is contingent upon the lengths of the tangent
vectors, as follows:

∥ n ∥2 ∝ ∥ s24 × s35 ∥2 ∝ ∥ s24 ∥2 . ∥ s35 ∥2 (7)

As object boundaries often involve at least one tangent vector with
significant length, as denoted by Equation 7, it becomes apparent that
the length of the normal vector should also be substantial in such re-
gions. Consequently, the vector’s length (referred to as the r compo-
nent in spherical coordinates) can serve as a valuable mask to identify
and subsequently exclude erroneous normal estimations. By applying
a straightforward thresholding process to the r values, outliers can be
located. The final normal estimation is then carried out by applying
this mask to the estimated normal map.

4 Experimental results

To assess the normal estimation performance of the proposed
method, experiments were conducted using real data captured by a
Microsoft Kinect Azure RGB-D camera, as well as synthetic depth
data from the 3F2N dataset [19]. All algorithms were implemented
in MATLAB. There are two approaches to visualize a surface normal
vector as an image. In the first method, each component of the normal
vector corresponds to a color channel, resulting in a color image de-
rived from the depth map. Although this approach is straightforward,
it may not effectively highlight minor errors in the estimated normal
vectors. The second method involves converting the normal vector
into spherical coordinates and examining the Iθ components. The
calculation of Iθ is as follows:

Iθ = tan−1
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The results of Iθ for various real depth maps are illustrated in Fig-
ure 2a, revealing that the proposed method surpasses all baseline
algorithms in terms of similarity to the ground truth images. Our prior
work [20] secures the second position. To ensure a fair comparison,
both algorithms use a common α value set to 2. Additionally, the
results of the plane fitting-based method with 25 neighboring points
are considered as the ground truth. Figure 2b displays the results of
normal estimation on the 3F2N dataset. Once again, the proposed
method and our previous work outperform other methods. Due to
the synthetic images’ smoothness, Nakagawa’s method remains un-
affected by the sensitivity of partial derivatives to noise. Consequently,
this method excels on synthetic data in comparison to real data.

To perform a quantitative comparison, Mean Squared Error (MSE)
is utilized as the performance metric. Table 1 and Table 2 display the
MSE values for the θ image components. As observed in the tables,
the proposed method exhibits superior performance when compared
to all baseline algorithms, with the exception of the θ component in
synthetic depth images, where no significant difference is observed
among the baseline algorithms. Given the relatively smooth nature



(a) IIIθθθ images of the estimation results of different algorithms (Real
images). From left: the depth map, the normals ground truth, Fan’s
method [19], Nakagawa’s method [18], Moradi’s method [20], the
proposed method.

(b) IIIθθθ images of the estimation results of different algorithms (Syn-
thetic images from 3F2N dataset [19]). From left: the depth image,
the normals ground truth, Fan’s method [19], Nakagawa’s method
[18], Moradi’s method [20], the proposed method.

Table 1: Mean Squared error (MSE) of Iθ images

[18] [19] [20] ours
1st scene 2.4227 1.8098 1.0161 0.9301
2nd scene 2.3099 1.3769 1.0783 0.9150
3rd scene 2.6072 1.2687 1.0244 0.8032
4th scene 2.7241 1.2618 1.0012 0.8918

Table 2: Mean Squared error (MSE) of Iθ images (3F2N dataset [19])

[18] [19] [20] ours
1st scene 0.0790 3.3966 0.0779 0.0491
2nd scene 0.2408 2.8881 0.2378 0.1333
3rd scene 0.1414 0.7437 0.1415 0.1465
4th scene 0.8808 0.7672 0.8852 0.6874

of synthetic data, both the proposed method and our prior work [20]
employ an α value set to 1. In this scenario, Nakagawa’s method
demonstrates similar performance to our previous work (as evident in
Table 2). It’s worth noting that all images are normalized within the
range of [0−2π].

The color image representation of normal vectors serves as a vi-
sual tool to highlight instances of erroneous surface normal estimation
at object boundaries. This can be particularly useful for understand-
ing the impact of depth discontinuities on the quality of surface normal
estimation. In Figure 3, we present a step-by-step demonstration of
the process of removing invalid normal vectors. To begin, Figure 3a
displays the initial estimated surface normal vectors using Equation 3.
Notably, this representation reveals areas with erroneous estimations,
particularly in regions marked by depth discontinuities. As discussed
in subsection 3.2, the r component (as shown in Figure 3b) in spher-
ical coordinates tends to have large values at locations with poten-
tial erroneous estimations. Utilizing a straightforward thresholding ap-
proach on the r values, we can identify the outliers, as illustrated in
Figure 3c. The final step involves applying the mask from Figure 3c
to the initial normal vectors presented in Figure 3a. The result, shown
in Figure 3d, represents the refined surface normal estimation, effec-
tively excluding the erroneous estimations.

As per the table, the proposed method ranks second in terms of
execution time, with our previous work (Moradi’s method) [20] leading
the pack. The proposed method exhibits slightly slower performance
compared to our previous work. It’s important to highlight that the
single-scale implementation of the proposed method is equivalent to
a four-scale implementation of our previous work, resulting in an al-
most fourfold increase in speed. The normal estimation process can
be performed at an impressive rate of 135 frames per second (fps)
using the proposed method. Fan’s method, while straightforward in its
implementation, incurs additional execution time due to the process
of searching for invalid points (∆Z = 0) in the normal map.
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Fig. 3: Surface normal vectors refinement at object boundaries. a)
initial surface normal estimation using Equation 3, b) value of r com-
ponent for each point, c) outlier removal mask, and d) final result of
surface normal estimation

Table 3: The average execution time for different normal estimation
methods for a 576×640 depth image

Estimation method execution time (mS)
local plane fitting 3776

Nakagawa’s method [18] 17.132
Fan’s method [19] 154.676

Moradi’s method [20] 6.646
The proposed method 7.415

5 Conclusion

This paper presents an improved version of our prior work, where we
optimized the normal estimation process, initially implemented effi-
ciently as a closed-form solution. In this enhancement, we employ an
averaging process for various directions to reduce the impact of mea-
surement noise without changing the pixel distance parameter, α. We
then refine the multi-directional approach for improved efficiency. This
approach results in a fast and accurate normal estimation method for
smooth surfaces. Nevertheless, challenges arise when it encounters
object boundaries and depth discontinuities. To tackle these issues,
we introduce a straightforward yet effective mask based on the length
of estimated normal vectors to filter out erroneous results. Compar-
ative analyses against established surface normal estimation algo-
rithms, using both qualitative and quantitative assessments on real
and synthetic depth images, reveal that our proposed method excels
in accuracy and computational efficiency.
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