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Abstract

We present DARLEI, a GPU-accelerated framework to study the in-
terplay between parallel reinforcement learning and morphological
evolution in producing emergent ecological complexity. DARLEI har-
nesses Isaac Gym for scalable multi-agent simulation in rich environ-
ments, enabling new research into the dynamics between individual
lifetime learning and long-term evolutionary goals. Compared to prior
work requiring large distributed CPU clusters, DARLEI achieves over
20x speedup using just a single workstation. We systematically char-
acterize DARLEI’s performance under various conditions, revealing
factors impacting diversity of evolved morphologies. While current
implementations demonstrate limited diversity over generations, we
hope future work can build on DARLEI to study mechanisms for open-
ended discovery. By bringing scalable accelerated simulation to this
domain, DARLEI introduces a new platform to rapidly prototype and
evaluate approaches at the intersection of embodied intelligence, re-
inforcement learning, and evolutionary computation.

1 Introduction

The existence of complex life on Earth demonstrates the creative
potential of evolution. However, despite decades of research into
evolutionary algorithms, modern implementations still lack the open-
endedness of biological evolution [1]. While approaches like genetic
programming optimize solutions for specific objectives, a key miss-
ing ingredient is the unbounded creativity allowing natural evolution
to perpetually invent new solutions. One promising approach is co-
evolution of interacting populations, where satisfying minimal crite-
ria relative to a counterpart population enables open-ended discov-
ery [1]. For example, Minimal Criterion Coevolution (MCC) [2] has
shown potential by coevolving maze environments along with navi-
gating agents. As mazes grow more complex, agents must develop
new navigation strategies, which in turn facilitate further elaboration
of the mazes. However, while MCC points toward a fruitful research
direction, existing implementations have been limited to simple 2D
gridworlds. To fully harness the creative potential of this approach,
we need simulation frameworks that allow:

• Procedural generation of realistic, physics-based environments
• Evolution of diverse embodied morphologies
• Scalable distributed execution for computational efficiency
• Multi-agent interactions to study emergent ecological dynamics
Recent tools like Isaac Gym [3] and advancements in sim2real

transfer [4] open up new possibilities for such a platform. In particu-
lar, the DERL framework [5] introduced a distributed system for auto-
mated design and training of embodied agents on challenging loco-
motion and manipulation tasks. While DERL demonstrated promising
results, it requires a distributed CPU cluster, thus making it inaccessi-
ble to most researchers.

To overcome these limitations, we present the Deep Acceler-
ated Reinforcement Learning with Evolutionary Intelligence (DAR-
LEI) framework. DARLEI adapts DERL’s core ideas into a GPU-
accelerated platform using Isaac Gym, achieving over 20x speedup
on a single workstation. Beyond computational acceleration, DAR-
LEI’s integration with Isaac Gym also enables future work on multi-
agent coevolution in rich simulated environments.

While our current experiments only showcase locomotion tasks
in simple planes, DARLEI lays the groundwork to study open-ended
discovery at the intersection of evolution, embodied intelligence, and
multi-agent coevolution. By bringing scalable accelerated simulation
to this domain, DARLEI introduces a new platform to rapidly proto-
type and evaluate approaches that harness the creative potential of
interacting co-evolving populations.

2 Methods

DARLEI enables large-scale evolutionary learning by combining a dis-
tributed asynchronous architecture with GPU-accelerated simulation.
It builds upon the UNIMAL [5] design space and tournament selec-
tion approach of DERL, while harnessing the parallelism and speed
of Isaac Gym for agent training.

2.1 System Architecture

DARLEI employs a distributed asynchronous architecture similar to
DERL, with separate worker processes for population initialization,
agent training, and tournament evolution. This decouples the differ-
ent stages, allowing them to be parallelized across CPU and GPU
resources.

The core element borrowed from DERL is the UNIMAL (UNIver-
sal aniMAL) design space, enabling the learning of locomotion and
manipulation skills in stochastic environments without needing an ac-
curate model of the agent or environment. UNIMAL agents are hierar-
chical rigid-body structures, generated procedurally through mutation
operations starting from a root node. This genotype generation is con-
ceptually similar to the morphological generation proposed in Evolved
Virtual Creatures [6], with the key distinction that agents are limited to
10 limbs and cyclic graphs are forbidden. Population initialization runs
on the CPU, leveraging multiple processes to generate P topologically
unique UNIMALs from an initial pool of 10P candidate morphologies.
Proprioceptive force sensors are then added to "foot" limbs before se-
rializing to a MuJoCo-based XML representation [7] on a filesystem
that all nodes and workers have access to.

2.2 Agent Training

Each UNIMAL agent is trained with PPO [8] using reinforcement
learning through a process called lifetime learning, where the agent
learns to perform locomotion tasks over 30 million simulation steps.
These steps are parallelized across M Isaac Gym environments on
the GPU. We utilize Isaac Gym’s default hyperparameters that were
tuned for the Ant demo task. While it may be possible to reduce the
number of steps required or get better results through further tuning,
we leave this as future work and adopt the default setting for now.

During training, agents receive only proprioceptive observations
(joint positions/velocities and force sensor data) and ego-centric ex-
teroceptive observations (head position/velocity relative to the target).
Currently, we evaluate agents on the simple environment shown in
Figure 1 where the task is to move towards a fixed target at the end
of a flat terrain. While adding more environments is straightforward,
we focus all our current experiments on the flat terrain task and defer
additional environments to future work.

The reward formulation (Equation 1) encourages forward locomo-
tion towards the target, staying upright, and avoiding early termina-
tion. It is identical to the formulation used in Isaac Gym’s Ant and
Humanoid demos [3], with one key difference: the termination height
is dynamically set to 50% of the agent’s initial head height. This pre-
vents excessive crawling behaviors, as noted in DERL’s work [5]. The
final fitness is the mean reward over the last 100,000 lifetime steps.

(1)

R = Rprogress + Ralive × 1(head_height

≥ termination_height) + Rupright + Rheading

+ Reffort + Ract + Rdof + Rdeath × 1(head_height

≤ termination_height)



Fig. 1: Overhead view of 8192 agents in Isaac Gym simulation.

2.3 Tournament Evolution

Once the initial population has been trained, tournament evolution
begins asynchronously across W parallel worker processes. Each
worker repeatedly samples 4 agents uniformly at random from the
range [T ·G,Q], where G is the current generation number, T is the
number of tournaments per generation, P is the initial population size,
and Q is the current total number of evolved agents. We compute
G = ⌊(Q−P)/T⌋ to determine the generation number. The 4 sampled
agents then participate in a tournament where the agent with the high-
est fitness wins. Fitness values for each agent are computed once
during its initial lifetime learning phase. The winning agent undergoes
mutation by randomly selecting and applying a modification from the
UNIMAL design space, including deleting a limb, adding new limbs, or
altering limb parameters like length, angle, density, etc. The mutated
child agent is added back into the population for future tournaments.
This evolutionary loop continues until a maximum of 10 generations,
imposed due to time constraints.

Similar to DERL, we employ an aging criteria based on the range
R to maintain population diversity and ensure robustness to initially
lucky genotypes. Aging provides a more egalitarian approach com-
pared to directly culling low fitness agents, since all agents eventually
succumb to old age regardless of fitness. Basing aging on completed
generations rather than raw population size also improves fault toler-
ance. If a worker fails, new workers can be added without affecting
the current population. Consequently, our population size temporarily
exceeds P until the next generation completes. With fewer workers
than DERL in our experiments, postponing aging until after full gener-
ations are completed allows more mutations per agent compared to
aging prematurely based on raw population size alone.

We conducted all experiments on a workstation with 2x NVIDIA
A6000 GPUs and a 32-core AMD Ryzen Threadripper PRO 3955WX
CPU. To ensure accurate benchmarking, no other applications were
active during the experiments.

3 Results

To evaluate DARLEI’s capabilities, we conducted experiments analyz-
ing its performance, scalability, and the quality of evolved solutions.

3.1 Scalability via Parallel Environments

A key advantage of DARLEI is its ability to leverage large numbers of
parallel environments during training to achieve significant speedups.
As shown in Figure 2, increasing the number of environments reduces
training time, with 16384 environments providing over 3.3x faster train-
ing than 2048. However, using too many environments can negatively
impact final agent fitness if the horizon is not sufficiently long, as the
RL objective becomes short-term focused [3]. Based on these results,
we select 8192 parallel environments for the remainder of our experi-
ments as it provides the best compromise between training time and
agent fitness.

Furthermore, we measure the total time for a complete evolution-
ary run (P = 100,T = 50,W = 10) evolving 600 morphologies. Across 4
trials, DARLEI takes (205±8) minutes, or 3.41 minutes per agent per

Fig. 2: Impact of parallel environments on agent fitness and training
time. To enable a fair comparison [3], the horizon length is decreased
proportionally with more environments to ensure that the overall expe-
rience an RL agent observes is constant. Specifically, we use horizon
lengths of 64, 32, 16, and 8 for 2048, 4096, 8192, and 16384 environ-
ments respectively. Results were collected based on lifetime learning
across 30 agents from the initial population.

worker. In contrast, DERL requires 16 hours for 4000 morphologies
using 288 workers, equating to 69.12 minutes per agent per worker.
Thus, DARLEI provides a significant 20.3x speedup over DERL us-
ing just a single workstation. Additional compute nodes can further
reduce the total time exponentially.

3.2 Impact of Simulation Parameters

To understand how simulation parameters can impact learning, we in-
vestigated the effect of varying the environment radius (Figure 4). As
shown in Figure 3, larger radii improve median fitness by allowing fur-
ther exploration before termination, which usually happens when the
agent loses balance or collides with another agent. However, mod-
erately smaller radii introduce collisions earlier, driving more robust
policies. For instance, agents drawn from the peak in outlier fitness at
a 2m radius exhibit agile behaviors like high-jumping and cartwheel-
ing to avoid collisions, suggesting this "sweet spot" radius promotes
such strategies. However, the tradeoff is that smaller radii increase
reset frequency and training time due to more frequent termination.
Overall, the optimal radius balances robustness gains from collisions
against exploration benefits of larger areas. While larger radii maxi-
mize median fitness, moderate radii may better discover diverse sur-
vival strategies.

Fig. 3: Impact of environment radius on agent fitness (left) and training
time (right). Results based on 30 agents from the initial population in
a simulation with 8192 parallel environments and horizon length of 16.

3.3 Quality of Generated Solutions

The quality of evolved solutions is analyzed by examining mutation cy-
cles, defined as the number of times an agent has been mutated. Four
experiments are conducted with varying population sizes, tournament
counts, and asynchronous worker processes.

The results reveal two key insights. First, mutations are gener-
ally harmful rather than beneficial. The top plot in Figure 7 shows



Fig. 4: Environments with radii of 1m, 2m, and 5m.

Fig. 5: Population diversity is seen to decrease over generations.
Lines trace rewards of agents’ lineages.

agent fitness increasing with more mutations, falsely implying muta-
tions improve fitness. However, the center plot shows that in most ex-
periments, mutations actually reduce fitness between ancestors and
descendants on average. The fitness increase in the top plot stems
from selection bias - fitter ancestors reproduce more, accumulating
additional mutations.

Second, diversity collapses rapidly over generations as shown in
Figure 5. All final agents descend from just two initial ancestors, de-
spite starting with a diverse population. Even with more workers, con-
vergence emerges quickly.

In essence, while selection propagates fit solutions, mutations
degrade fitness without mechanisms to maintain diversity. The lack
of sustained open-ended evolution implies further techniques are
needed to drive ongoing innovation. Potential directions include spe-
ciation, fitness sharing, or novelty search criteria. By rewarding novel
behaviors instead of raw task performance, agents may continue dis-
covering new strategies.

Fig. 6: Morphological changes in the best agent from experiment con-
figuration P=100, T=50, W=20 over successive mutations. Despite
visual similarity, invisible modifications to limb parameters (joint angle
and density) occurred between mutation 3 and 8 improving fitness.
However, additional mutations were harmful causing regressions.

4 Discussion and Future Work

Our results reveal limitations in DARLEI’s current approach for main-
taining diversity and enabling ongoing innovation. While selection
propagates high-performing solutions, mutations degrade fitness with-
out mechanisms to actively promote diversity. As a result, the popu-

Fig. 7: Impact of mutation cycles on: agent fitness (top), percentage
improvement in fitness between the youngest child and oldest ances-
tor (middle), and number of agents (bottom). Results are shown for
4 experiments (A,B,C,D), each with a unique configuration of initial
population size P, number of tournaments T , and number of parallel
worker processes W .

lation rapidly converges to human-like forms despite efforts like more
workers and tournaments. This lack of sustained diversity indicates
that key elements are missing for achieving open-ended discovery.

To promote greater open-endedness, future work could modify
the fitness criteria to reward novelty over raw task performance. Ap-
proaches like Minimal Criteria Novelty Search [9] or novelty search in
coevolution [10] may help drive morphological and behavioral diversity
by evaluating agents based on how differently they accomplish the
task rather than absolute performance. Balancing extrinsic rewards
like task completion with intrinsic rewards for novelty could prevent
premature convergence.

Additionally, complex procedurally generated environments sat-
isfying a Minimal Criterion Coevolution could use multi-objective re-
wards enabling diverse agents to succeed in orthogonal ways. The
environment itself could also coevolve to challenge the capabilities of
the current population, driving the emergence of new strategies. By
co-evolving agents and environments through continual elaboration
on both sides, open-ended innovation may be sustained.

By decoupling individual lifetime learning from long-term evolu-
tion, DARLEI provides a platform to rapidly prototype and evaluate
methods combining reinforcement learning and evolution. While our
current experiments show limited diversity, we hope to extend DAR-
LEI by adding support for mechanisms like coevolving populations,
multi-objective rewards, and novelty-driven objectives to harness the
creative potential of open-ended evolution. The accelerated simula-
tion lowers the barrier for future work at the intersection of evolution,
multi-agent interactions, and embodied intelligence.
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