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Abstract

The advent of generative adversarial neural networks (GANs) has cre-
ated a new frontier for generating synthetic datasets having the same
statistical properties as the real data from which it was generated.
Real data comprises various types of data, which further complicates
the synthesis process as specialized GANs are required to handle
these data with diverse variable types. In this context, Conditional
Tabular GAN (CTGAN) can be very useful as it has been found to han-
dle various types of non-spatial data successfully. However, the use of
CTGAN in generating spatial or geolocation data has remained largely
unexplored. This study uses the Traffic Collisions Open Data from the
Toronto Police Service to demonstrate the challenges involved in mod-
eling geolocation data in CTGAN and reports the potential limitations
of the deep learning data synthesizer in generating synthetic datasets
with substantial geolocation and spatial components.

1 Introduction

Deep learning data synthesizers, such as Generative Adversarial Net-
works (GANs), allow privacy-sensitive synthetic datasets to be devel-
oped [1–3]. As a majority of the datasets collected in real life are tab-
ular in nature, the use of Conditional Tabular GANs (CTGANs) allows
considerable flexibility in exploiting these datasets. The application
of CTGAN offers several advantages, which include (but are not lim-
ited to) (i) handling both continuous and discrete data, (ii) accounting
for imbalances, and (iii) multi-modality in the data [2]. Although ge-
olocation is an important component of most real-life datasets, stud-
ies exploring the suitability of existing GANs in generating geoloca-
tion synthetic data are limited. Furthermore, due to the high privacy
risk concerns associated with geolocation data, using GANs can of-
fer a substantial advantage over conventional statistical and machine
learning techniques that generate synthetic data from simply model-
ing the distribution of the real dataset or adopt decision-based ap-
proaches [1, 4]. For this purpose, the introduction of random noise in
the generator and the validation through discriminator during the data
synthesis process can offer added privacy protections, which other-
wise, are not available in conventional models [2, 4].

As a precautionary measure, while publicly sharing datasets, the
geolocation information in deidentified and anonymized datasets can
often be deliberately distorted to protect privacy. For example, while
sharing the events data (such as crimes or collisions), Toronto Po-
lice deliberately offsets the occurrences to the nearest road inter-
section node to protect the privacy of parties involved in the occur-
rence [5]. This could be severely problematic for advanced analyses
and research as risk modeling in various use cases involves modeling
the events of interest with high precision and granularity to accurately
identify the putative the risk factors and adjust for any unmeasured or
latent confounders [6, 7].

Unfortunately, modeling geolocation information, such as latitude
and longitude values, in CTGAN could be challenging as these two
variables must be considered conjointly during the synthesis process.
For example, a set of latitude and longitude values should be in-
terpreted together to define a single point location. Moreover, this
joint modeling must be done while considering their (spatial) relation-
ship with other variables in the dataset. Furthermore, as most GANs
were developed with a focus on analyzing image and tabular datasets
[2, 8, 9], there are limitations in modeling geolocation data, which of-
ten require specific geographic and projected coordinate systems to
define and characterize them in deep learning processes properly.

Therefore, considering existing research gaps, this study aims to

utilize the Traffic Collisions Open Data from the Toronto Police Service
to demonstrate the issues involved in modeling geolocation data in
CTGAN and discusses the potential limitations of the deep learning
data synthesizer that should be considered in generating geolocation
data.

2 Methods

2.1 Study Area and Data

The study considers the City of Toronto in Canada (Fig. 1). The
Motor Vehicle Collisions (MVC) occurring between 2014-2023 were
considered. The MVC dataset is comprised of information related to
property damage collisions, fail-to-remain collisions, injury collisions,
and fatalities [5]. For further details, please check the Toronto Police
Service Public Safety Data Portal.

Fig. 1: The study area with the occurrences of Motor Vehicle Colli-
sions: blue and red dots represent the occurrences inside and outside
the study boundary, respectively

The dataset contained 634,858 collision records. After remov-
ing faulty records (91,791) with latitude and longitude values that
fell outside the Canadian boundary, a total of 543,067 records
were considered for the synthetic data generation process in CT-
GAN. A total of 21 variables were considered: identification codes
(OBJECTID, EVENT_UNIQ); occurrence details comprising occur-
rence date, month, day of the week, year, and hour (OCC_DATE,
OCC_MONTH, OCC_DOW, OCC_YEAR, OCC_HOUR); Police di-
vision of occurrence (DIVISION); number of persons killed or in-
jured (FATALITIES, INJURY_COL); collisions fail to remain or prop-
erty damage type (FTR_COLLIS, PD_COLLISI); neighborhood id
and name (HOOD_158, NEIGHBOURH); longitude and latitude
(LONG_WGS84. LAT_WGS84); information indicating whether the
collision involved a person in an automobile, motorcycle, passenger,
bicycle or pedestrian (AUTOMOBILE, MOTORCYCLE, PASSENGER,
BICYCLE, PEDESTRIAN).

2.2 Synthesizer: CTGAN

The GAN-based deep learning synthesizer, CTGAN, available in the
Synthetic Data Vault (SDV) library, was employed to train the model



and generate synthetic data [2]. The CTGAN model was trained for
75 epochs, and a batch size of 1000 was used. The values for all
other parameters were set to default values, which are output sam-
ples for each one of the discriminator layers (256,256), discriminator
weight decay (1e-6) and learning (2e-4) rates, size of generator’s ran-
dom sample (128), generator weight decay (1e-6) and learning (2e-4)
rates, output samples for each one of the Residuals in the genera-
tor (256, 256). As this study mainly focused on understanding the
abilities of CTGAN to generate synthetic geolocation data, default pa-
rameters were used to maintain consistency in the different synthetic
data generation approaches.

2.3 Synthetic Data Generation Approaches

To demonstrate the challenges associated with modeling latitude and
longitude values in CTGAN, we adopted three specific approaches:

• Approach 1 (No Constraints): The entire MVC dataset was
entered into the synthesizer without applying any filtering or
constraints for the latitude and longitude values. As shown in
Fig1, 14,326 points were found to be located outside the City
of Toronto, which were entered along with the points that fell
inside.

• Approach 2 (Upper and Lower Bound Constraints): The entire
MVC dataset was entered into CTGAN, excluding the 14,326
points outside the Toronto boundary. Additionally, the minimum
and maximum values of latitude and longitude for the geograph-
ical extent of Toronto were computed and used as a scalar
range constraint in the synthesizer.

• Approach 3 (Geospatial Aggregation): The entire MVC dataset
was entered into the synthesizer, excluding the latitude and lon-
gitude values. The latitude and longitude values were used to
create a Geohash variable. The Geohash is an encoding sys-
tem by which latitude and longitude pairs are converted into a
single Base32 string [10]. The Geohash system divides the ge-
ographic area of the whole world into rectangular grids. There-
fore, the latitude and longitude values are aggregated into a
rectangular grid system through the process [10]. The geo-
hash2 library in Python was used to encode latitude and lon-
gitude.

2.4 Evaluation Techniques

The geolocation information of each of the synthetic datasets pro-
duced was evaluated in terms of their structural and spatial character-
istics.

Structural/Non-spatial Evaluation Hellinger Distance (HD) mea-
sures the difference in distribution between each variable in the real
and synthetic data [1, 11]. HD was implemented to quantify how dif-
ferent the distributions of the latitude and longitude variables were in
the real and synthetic data. Given two discrete probability distribu-
tions P = {p1, p2, ..., pn} and Q = {q1,q2, ...,qn}, the HD between P and
Q can be expressed by eq. 1.
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√
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√
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The HD scores, when close to 0, suggest that the distribution of
all variables is similar between the real and the synthetic datasets.

Additionally, univariate comparisons of the latitude and longitude
variables in the real and synthetic datasets were compared using his-
tograms and Kernel Density Estimate (KDE) plots.

Spatial Evaluation Spatial distribution of events was evaluated to
measure the proportion of collision events that fell within and outside
the boundary of the study area. In contrast to HD metrics, this evalu-
ation aimed to understand the actual spatial distribution of the events
and can be expressed using eq. 2.

Spatial Proportion =

(
Total events within/outside boundary

Total of all events

)
×100

(2)

Moreover, the spatial distribution of events was visually evaluated
by producing maps of the synthetic MVC events.

3 Results and Discussions

The synthetic data generation process was successful for Ap-
proaches 1 and 2. However, the synthesizing process for Approach
3 was terminated due to excessive memory usage with the following
error message.

TerminatedWorkerError: A worker process managed by the ex-
ecutor was unexpectedly terminated. This could be caused by a seg-
mentation fault while calling the function or by excessive memory us-
age causing the Operating System to kill the worker. The exit codes
of the workers are {SIGKILL(-9)}

A detailed inspection of the error message revealed that the cate-
gorical representation of the Geohash variables created an array that
the CTGAN synthesizer could not handle properly. The number of
unique Geohash codes in the training dataset was 14,821, which, dur-
ing the one-hot encoding process for 543,067 observations, led to the
memory demand to handle an array of size 543,067 x 14,821. Conse-
quently, the synthetic data generation process using Approach 3 was
terminated due to memory constraints.

Structural/Non-spatial Evaluation: The overall Hellinger Distance
scores have been illustrated using the boxplot diagram in Fig. 2. The
boxplots for the synthetic datasets generated using Approach 1 and
2 suggest that the distributions between real and synthetic data of all
variables are very similar for synthetic data generated using Approach
1 when compared to Approach 2. Therefore, the HD results suggest
that the exclusion of out-of-bounds observations in the real data and
the application of upper and lower-bound constraints for the latitude
and longitude values in the synthesizer could potentially affect the
training and the synthetic data generation process.

Fig. 2: The HD scores for all variables in the dataset, showing the
similarities in the univariate distributions between the real and the syn-
thetic data.

On a closer inspection of the histogram and KDE plots for the
latitude and longitude values in the real and synthetic datasets (Ap-
proaches 1 and 2), the results suggest that the CTGAN had a rela-
tively low success in retaining the distribution patterns of the latitude
and longitude in the real data while producing the synthetic data Fig. 3
and Fig. 4. The individual HD scores for latitude and longitude vari-
ables were analyzed further and were found to be close to 0.9. This
further confirmed that the CTGAN had difficulties in capturing the dis-
tribution of these variables from the real to synthetic datasets.



Fig. 3: The histogram and KDE plots of latitude and longitude vari-
ables in the synthetic dataset produced using Approach 1

Spatial Evaluation: Fig. 5 and Fig. 6 maps the MVC events in the
synthetic datasets produced by Approach 1 and 2, respectively. The
figures illustrate clearly that the latitude and longitude combinations
produced in both the constrained and the unconstrained synthesizers
represented a substantial number of events that were located outside
the study boundary. Contrasting the two figures with Fig. 1, it is clearly
visible that even for points that were located inside the study bound-
ary, the number of unique points far exceeded the number of unique
points present in the real dataset.

Table 1 shows that the number of MVC occurrences falling out-
side the boundary has become thrice in the synthetic datasets when
compared with the real data. Moreover, the number of unique latitude
and longitude pairs in the synthetic datasets is 25 times higher than
the real data and is unique for each observation.

Table 1: Spatial evaluation of geolocation attributes

Real Data Synth. (App. 1) Synth. (App. 2)
Unique Lat/Long 21,071 543,067 528,269
Inside Obs (%) 528,269 (97.28%) 502,481 (92.53%) 488,233 (92.42%)
Outside Obs (%) 14,798 (2.72%) 40,586 (7.47%) 40,036 (7.58%)
Total Obs 543,067 543,067 528,269

4 Conclusion

Generating synthetic datasets with geolocation information bears
great potential for advancing geospatial research, software develop-
ment, and the future development of deep learning models. However,
the use of existing synthesizers, such as CTGAN, warrants caution as
modeling latitude and longitude values in GANs requires careful con-
sideration of the spatial characteristics of these variables. This study
demonstrated that using CTGAN to generate synthetic latitude and
longitude values may produce geographically redundant values. The
findings form the knowledge base for future research to explore more
specialized GANs for modeling geolocation data and more sophisti-
cated techniques to model latitude and longitude values in existing
GAN-based synthesizers.

Fig. 4: The histogram and KDE plots of latitude and longitude vari-
ables in the synthetic dataset produced using Approach 2

Fig. 5: The spatial distribution of MVCs in the synthetic data generated
using Approach 1. The blue and red dots represent the occurrences
inside and outside the study boundary, respectively

Fig. 6: The spatial distribution of MVCs in the synthetic data generated
using Approach 2. The blue and red dots represent the occurrences
inside and outside the study boundary, respectively
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